精英家教网 > 高中数学 > 题目详情

在1与2之间插入个正数,使这个数成等比数列;又在1与2之间插入个正数,使这个数成等差数列.记.求:

求数列的通项;

 当时,比较的大小,并证明你的结论

【小题1】成等比数列,

 

成等差数列,

所以数列的通项,数列的通项

【小题2】要比较的大小,只需比较的大小,也就是比较当时,的大小.

时,,知

经验证,时,均有成立,猜想,当时有下面用数学归纳法证明:

(ⅰ)时已证

(ⅱ)假设时不等式成立,即,好么

.即时不等式也成立.

根据(ⅰ)和(ⅱ)当时,成立,即


解析:

开放题求解要注意观察题目的特点,可以先通过特殊数尝试可能的结果,然后总结归纳出一般规律,利用归纳法证明结论

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n为正整数)都在函数y=(
1
2
)x
的图象上,且数列{an} 是a1=1,公差为d的等差数列.
(1)证明:数列{bn} 是公比为(
1
2
)d
的等比数列;
(2)若公差d=1,以点Pn的横、纵坐标为边长的矩形面积为cn,求最小的实数t,若使cn≤t(t∈R,t≠0)对一切正整数n恒成立;
(3)对(2)中的数列{an},对每个正整数k,在ak与ak+1之间插入2k-1个3(如在a1与a2之间插入20个3,a2与a3之间插入21个3,a3与a4之间插入22个3,…,依此类推),得到一个新的数列{dn},设Sn是数列{dn}的前n项和,试求S1000

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n为正整数)都在函数y=(
1
2
)x
的图象上,且数列{an} 是a1=1,公差为d的等差数列.
(1)证明:数列{bn} 是等比数列;
(2)若公差d=1,以点Pn的横、纵坐标为边长的矩形面积为cn,求最大的实数t,使cn
1
t
(t∈R,t≠0)对一切正整数n恒成立;
(3)对(2)中的数列{an},对每个正整数k,在ak与ak+1之间插入3k-1个3(如在a1与a2之间插入30个3,a2与a3之间插入31个3,a3与a4之间插入32个3,…,依此类推),得到一个新的数列{dn},设Sn是数列{dn}的前n项和,试探究2008是否为数列{Sn}中的某一项,写出你探究得到的结论并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕尾二模)设等比数列{an}的前n项和为Sn,已知an+1=2Sn+2(n∈N*)
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列(如:在a1与a2之间插入1个数构成第一个等差数列,其公差为d1;在a2与a3之间插入2个数构成第二个等差数列,其公差为d2,…以此类推),设第n个等差数列的和是An.是否存在一个关于n的多项式g(n),使得An=g(n)dn对任意n∈N*恒成立?若存在,求出这个多项式;若不存在,请说明理由;
(3)对于(2)中的数列d1,d2,d3,…,dn,…,这个数列中是否存在不同的三项dm,dk,dp(其中正整数m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}  的通项an=n,对每个正整数k,在ak与ak+1之间插入3k-1个2(如在a1与a2之间插入30个2,a2与a3之间插入31个2,a3与a4之间插入32个2,…,依次类推),得到一个新的数列{dn},设Sn是数列{dn}的前n项和,则S120=
245
245

查看答案和解析>>

科目:高中数学 来源: 题型:

在1与2之间插入n个正整数a1,a2,a3,…,an,使这n+2个数成等比数列,又在1与2之间插入n个正数b1,b2,b3,…,bn,使这n+2个数成等差数列,记An=a1a2a3…an,Bn=b1+b2+b3+…+bn求数列{An}和{Bn}的通项.

查看答案和解析>>

同步练习册答案