精英家教网 > 高中数学 > 题目详情
已知函数.
(Ⅰ)若,求在点处的切线方程;
(Ⅱ)求函数的极值点.
(Ⅰ);(Ⅱ)当时,的极小值点为,极大值点为;当时,的极小值点为;当时,的极小值点为.

试题分析:(Ⅰ)时,,先求切线斜率,又切点为,利用直线的点斜式方程求出直线方程;(Ⅱ)极值点即定义域内导数为0的根,且在其两侧导数值异号,首先求得定义域为,再去绝对号,分为两种情况,其次分别求的根并与定义域比较,将定义域外的舍去,并结合图象判断其两侧导数符号,进而求极值点;
试题解析:的定义域为.
(Ⅰ)若,则,此时.因为,所以,所以切线方程为,即.
(Ⅱ)由于.
⑴ 当时,
,得(舍去),
且当时,;当时,
所以上单调递减,在上单调递增,的极小值点为.
⑵ 当时,.
① 当时,,令,得,(舍去).
,即,则,所以上单调递增;
,即, 则当时,;当时,,所以在区间上是单调递减,在上单调递增,的极小值点为.
② 当时,.
,得,记
,即时,,所以上单调递减;
,即时,则由
时,;当时,;当时,
所以在区间上单调递减,在上单调递增;在上单调递减.
综上所述,当时,的极小值点为,极大值点为
时,的极小值点为
时,的极小值点为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,其中,且.
⑴当时,求函数的最大值;
⑵求函数的单调区间;
⑶设函数若对任意给定的非零实数,存在非零实数),使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中.
(Ⅰ)若,求的值,并求此时曲线在点处的切线方程;
(Ⅱ)求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是二次函数,不等式的解集是,且在点处的切线与直线平行.
(1)求的解析式;
(2)是否存在t∈N*,使得方程在区间内有两个不等的实数根?
若存在,求出t的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,函数
(I)试求f(x)的单调区间。
(II)若f(x)在区间上是单调递增函数,试求实数a的取值范围:
(III)设数列是公差为1.首项为l的等差数列,数列的前n项和为,求证:当时,.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

f(x)=-x2bln (x+2)在(-1,+∞)上是减函数,则b的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数内单调递增,则的取值范围为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数 ,则函数的各极小值之和为 (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于以下命题
①若=,则a>b>0;
②设a,b,c,d是实数,若a2+b2=c2+d2=1,则abcd的最小值为
③若x>0,则((2一x)ex<x+2;
④若定义域为R的函数y=f(x),满足f(x)+ f(x+2)=2,则其图像关于点(2,1)对称。
其中正确命题的序号是_______(写出所有正确命题的序号)。

查看答案和解析>>

同步练习册答案