精英家教网 > 高中数学 > 题目详情
已知函数,函数
(I)试求f(x)的单调区间。
(II)若f(x)在区间上是单调递增函数,试求实数a的取值范围:
(III)设数列是公差为1.首项为l的等差数列,数列的前n项和为,求证:当时,.
(Ⅰ)的单调递增区间是的单调递减区间是
(Ⅱ).(Ⅲ)见解析.

试题分析:(Ⅰ) 利用导数值非负,得的单调递增区间是;利用导数值非正,得到的单调递减区间是
(Ⅱ)利用是单调递增函数,则恒成立,只需恒成立,转化成
,利用,得到.
(Ⅲ)依题意不难得到=1+++
根据时, =+上为增函数,
可得,从而;
构造函数,利用“导数法”得到, 从而不等式成立.
应用“累加法”证得不等式.
本题解答思路比较明确,考查方法较多,是一道相当典型的题目.
试题解析:(Ⅰ)=,所以,,
因为,所以,令
所以的单调递增区间是的单调递减区间是;4分
(Ⅱ)若是单调递增函数,则恒成立,即恒成立
,因为,所以.                .7分
(Ⅲ)设数列是公差为1首项为1的等差数列,所以=1+++
时,由(Ⅱ)知:=+上为增函数,
=-1,当时,,所以+,即
所以;
,则有,当,有
,即,所以时,
所以不等式成立.
时,
将所得各不等式相加,得


).                   13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)若,求在点处的切线方程;
(Ⅱ)求函数的极值点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数.
(1)当时,求函数的单调区间和极值;
(2)若恒成立,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)曲线y=f(x)在x=0处的切线恰与直线垂直,求的值;
(2)若x∈[a,2a]求f(x)的最大值;
(3)若f(x1)=f(x2)=0(x1<x2),求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义函数阶函数.
(1)求一阶函数的单调区间;
(2)讨论方程的解的个数;
(3)求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为常数)
(1)当恒成立,求实数的取值范围;
(2)若函数有对称中心为A(1,0),求证:函数的切线在切点处穿过图象的充要条件是恰为函数在点A处的切线.(直线穿过曲线是指:直线与曲线有交点,且在交点左右附近曲线在直线异侧)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数R,
(1)求函数f(x)的值域;
(2)记函数,若的最小值与无关,求的取值范围;
(3)若,直接写出(不需给出演算步骤)关于的方程的解集

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为常数,函数有两个极值点,则(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数y=f(x)在(-,)内有定义,对于给定的正数k,定义函数:
,取函数,若对任意的x∈(-,),恒有fk(x)=f(x),则(   )
A.k的最大值为2B.k的最小值为2
C.k的最大值为1D.k的最小值为1

查看答案和解析>>

同步练习册答案