精英家教网 > 高中数学 > 题目详情
(本小题满分12分)已知函数.
(1)当时,求函数的单调区间和极值;
(2)若恒成立,求实数的值.
(1)函数的减区间为,增区间为,极小值为,无极大值;(2).

试题分析:本题综合考察函数与导数及运用导数求单调区间、极值、最值等数学知识和方法,突出考查综合运用数学知识和方法分析问题、解决问题的能力.第一问,将代入,先得到的表达式,注意到定义域中,对求导,根据,判断出的单调增区间,,判断出的单调减区间,通过单调性判断出极值的位置,求出极值;第二问,先将恒成立转化为恒成立,所以整个这一问只需证明即可,对求导,由于,所以须讨论的正负,当时,,所以判断出上为增函数,但是,所以当时,不符合题意,当时,判断出上为减函数,上为增函数,但是,必须证明出,所以再构造新函数,判断函数的最值,只有时符合.
试题解析:⑴解:注意到函数的定义域为,
,
时, ,            2分
,则;若,则.
所以上的减函数,是上的增函数,
,
故函数的减区间为,增区间为,极小值为,无极大值.---5分
⑵解:由⑴知,
时,恒成立,所以上的增函数,
注意到,所以时,不合题意.    7分
时,若,;若,.
所以上的减函数,是上的增函数,
故只需.      9分
,
,
时,; 当时,.
所以上的增函数,是上的减函数.
当且仅当时等号成立.
所以当且仅当时,成立,即为所求.    12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知是二次函数,不等式的解集是,且在点处的切线与直线平行.
(1)求的解析式;
(2)是否存在t∈N*,使得方程在区间内有两个不等的实数根?
若存在,求出t的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数=
(1)当时,求函数的单调增区间;
(2)求函数在区间上的最小值;
(3)在(1)的条件下,设=+
求证:  (),参考数据:。(13分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)时,求处的切线方程;
(Ⅱ)若对任意的恒成立,求实数的取值范围;
(Ⅲ)当时,设函数,若,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,函数
(I)试求f(x)的单调区间。
(II)若f(x)在区间上是单调递增函数,试求实数a的取值范围:
(III)设数列是公差为1.首项为l的等差数列,数列的前n项和为,求证:当时,.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数时,都取得极值.
(1)求的值;
(2)若,求的单调区间和极值;
(3)若对都有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数内单调递增,则的取值范围为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于以下命题
①若=,则a>b>0;
②设a,b,c,d是实数,若a2+b2=c2+d2=1,则abcd的最小值为
③若x>0,则((2一x)ex<x+2;
④若定义域为R的函数y=f(x),满足f(x)+ f(x+2)=2,则其图像关于点(2,1)对称。
其中正确命题的序号是_______(写出所有正确命题的序号)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,则的解集为            

查看答案和解析>>

同步练习册答案