精英家教网 > 高中数学 > 题目详情
已知为常数,函数有两个极值点,则(  )
A.B.
C.D.
D

试题分析:求导得:.易得在点P(1,0)处的切线为.当时,直线与曲线交于不同两点(如下图),且

时,单调递减,当时,单调递增,
是极小值,是极大值.
.
.
,则,所以单调递增,,即.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,其中,且.
⑴当时,求函数的最大值;
⑵求函数的单调区间;
⑶设函数若对任意给定的非零实数,存在非零实数),使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数=
(1)当时,求函数的单调增区间;
(2)求函数在区间上的最小值;
(3)在(1)的条件下,设=+
求证:  (),参考数据:。(13分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)时,求处的切线方程;
(Ⅱ)若对任意的恒成立,求实数的取值范围;
(Ⅲ)当时,设函数,若,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某商场预计2014年从1月起前个月顾客对某种商品的需求总量(单位:件)
(1)写出第个月的需求量的表达式;
(2)若第个月的销售量(单位:件),每件利润(单位:元),求该商场销售该商品,预计第几个月的月利润达到最大值?月利润的最大值是多少?(参考数据:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,函数
(I)试求f(x)的单调区间。
(II)若f(x)在区间上是单调递增函数,试求实数a的取值范围:
(III)设数列是公差为1.首项为l的等差数列,数列的前n项和为,求证:当时,.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数其中为自然对数的底数, .
(1)设,求函数的最值;
(2)若对于任意的,都有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知都是定义在R上的函数,,则关于的方程有两个不同实根的概率为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的极大值为           .

查看答案和解析>>

同步练习册答案