精英家教网 > 高中数学 > 题目详情
设函数y=f(x)在(-,)内有定义,对于给定的正数k,定义函数:
,取函数,若对任意的x∈(-,),恒有fk(x)=f(x),则(   )
A.k的最大值为2B.k的最小值为2
C.k的最大值为1D.k的最小值为1
D

试题分析:依题意,对任意的x∈(-,),恒成立.又,所以.令.当时,;当时,.即函数上单调递增,在上单调递减. .因为恒成立,所以,即k的最小值为1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,函数
(I)试求f(x)的单调区间。
(II)若f(x)在区间上是单调递增函数,试求实数a的取值范围:
(III)设数列是公差为1.首项为l的等差数列,数列的前n项和为,求证:当时,.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,如果函数仅有一个零点,求实数的取值范围;
(2)当时,试比较与1的大小;
(3)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(I)当时,求的单调区间
(Ⅱ)若不等式有解,求实数m的取值菹围;
(Ⅲ)定义:对于函数在其公共定义域内的任意实数,称的值为两函数在处的差值。证明:当时,函数在其公共定义域内的所有差值都大干2。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数时,都取得极值.
(1)求的值;
(2)若,求的单调区间和极值;
(3)若对都有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为元,则销售量(单位:件)与零售价(单位:元)有如下关系:,问该商品零售价定为多少元时毛利润最大,并求出最大毛利润.(毛利润销售收入进货支出)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若函数的图象在公共点P处有相同的切线,求实数的值及点P的坐标;
(2)若函数的图象有两个不同的交点M、N,求实数的取值范围 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于以下命题
①若=,则a>b>0;
②设a,b,c,d是实数,若a2+b2=c2+d2=1,则abcd的最小值为
③若x>0,则((2一x)ex<x+2;
④若定义域为R的函数y=f(x),满足f(x)+ f(x+2)=2,则其图像关于点(2,1)对称。
其中正确命题的序号是_______(写出所有正确命题的序号)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的极大值为           .

查看答案和解析>>

同步练习册答案