£¨1£©£¨¢ñ£©ÒòΪ
=£¬
ËùÒÔ£¬
=£¬¼´m=1£®¡£¨3·Ö£©
£¨¢ò£©ÒòΪ
M=£¬ËùÒÔ
M-1=£®¡£¨4·Ö£©
ÉèÇúÏßy
2-x+y=0ÉÏÈÎÒâÒ»µã£¨x£¬y£©ÔÚ¾ØÕóM
-1Ëù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵÄÏñÊÇ£¨x'£¬y'£©£®
ÓÉ
==£¬¡£¨5·Ö£©
ËùÒÔ
µÃ
´úÈëÇúÏßy
2-x+y=0µÃy'
2=x'£®¡£¨6·Ö£©
ÓÉ£¨x£¬y£©µÄÈÎÒâÐÔ¿ÉÖª£¬ÇúÏßy
2-x+y=0ÔÚ¾ØÕóM
-1¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵÄÇúÏß·½³ÌΪy
2=x£®¡£¨7·Ö£©
£¨2£©£¨¢ñ£©ÓɵãMµÄ¼«×ø±êΪ
(4£¬)µÃµãMµÄÖ±½Ç×ø±êΪ£¨4£¬4£©£¬
ËùÒÔÖ±ÏßOMµÄÖ±½Ç×ø±ê·½³ÌΪy=x£®¡£¨3·Ö£©
£¨¢ò£©ÓÉÇúÏßCµÄ²ÎÊý·½³Ì
£¨¦ÁΪ²ÎÊý£©
»¯ÎªÆÕͨ·½³ÌΪ£¨x-1£©
2+y
2=2£¬¡£¨5·Ö£©
Ô²ÐÄΪA£¨1£¬0£©£¬°ë¾¶Îªr=
£®
ÓÉÓÚµãMÔÚÇúÏßCÍ⣬¹ÊµãMµ½ÇúÏßCÉϵĵãµÄ¾àÀë×îСֵΪMA-r=5-
£®¡£¨7·Ö£©
£¨3£©£¨¢ñ£©ÓÉ2a+b=9µÃ9-b=2a£¬¼´|6-b|=2|a|£®
ËùÒÔ|9-b|+|a|£¼3¿É»¯Îª3|a|£¼3£¬¼´|a|£¼1£¬½âµÃ-1£¼a£¼1£®
ËùÒÔaµÄȡֵ·¶Î§-1£¼a£¼1£®¡£¨4·Ö£©
£¨¢ò£©ÒòΪa£¬b£¾0£¬ËùÒÔ
z=a2b=a•a•b¡Ü()3=()3=33=27£¬¡£¨6·Ö£©
µ±ÇÒ½öµ±a=b=3ʱ£¬µÈºÅ³ÉÁ¢£®
¹ÊzµÄ×î´óֵΪ27£®¡£¨7·Ö£©