精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式,x∈[0,1],
(1)求函数f(x)的单调区间和值域;
(2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1],若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围.

解:(1)对函数f(x)=,x∈[0,1],求导,得
f′(x)==-
令f′(x)=0解得x=或x=.当x变化时,f′(x),f(x)的变化情况如下表所示:

所以,当x∈(0,)时,f(x)是减函数;当x∈(,1)时,f(x)是增函数.
当x∈[0,1]时,f(x)的值域是[-4,-3].
(II)对函数g(x)求导,则g′(x)=3(x2-a2).
因为a≥1,当x∈(0,1)时,g′(x)<5(1-a2)≤0,
因此当x∈(0,1)时,g(x)为减函数,
从而当x∈[0,1]时有g(x)∈[g(1),g(0)],
又g(1)=1-2a-3a2,g(0)=-2a,
即当x∈[0,1]时有g(x)∈[1-2a-3a2,-2a],
任给x1∈[0,1],f(x1)∈[-4,-3],存在x0∈[0,1]使得g(x0)=f(x1),
则[1-2a-3a2,-2a]?[-4,-3],即
解①式得a≥1或a≤-
解②式得a≤
又a≥1,故a的取值范围内是1≤a≤
分析:(1)先对函数f(x)=,x∈[0,1],求导,先对函数y=f(x)进行求导,然后令导函数大于0(或小于0)求出x的范围,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间,求出极值,即可得到答案.
(II)先对函数g(x)求导,则g′(x)=3(x2-a2).利用导数求出函数g(x)的取值范围,即当x∈[0,1]时有g(x)∈[1-2a-3a2,-2a],最后依据题意:“任给x1∈[0,1],f(x1)∈[-4,-3],存在x0∈[0,1]使得g(x0)=f(x1),”得到:[1-2a-3a2,-2a]?[-4,-3],从而列出不等关系求得a的取值范围即可.
点评:本小题主要考查利用导数研究函数的单调性、函数恒成立问题、利用导数求闭区间上函数的最值、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案