精英家教网 > 高中数学 > 题目详情

设f(x)=∣x-1∣,f,函数g(x)是这样定义的:当f时,g(x)= f(x),当f(x)<f时,g(x)= f,若方程g(x)=a有四个不同的实数解,则实数a的取值范围是(    )

A.a<4        B.0<a<4                C.0<a<3                D.3<a<4

 

【答案】

D

【解析】解:f1(x)=|x-1|,f2(x)=-x2+6x-5的图象如图,

函数g(x)的图象为两函数中位置在上的部分,即

g(x)= -x+1      (x≤1)

 -x2+6x-5   (1<x≤4)

x-1        (x>4)

 由 y=x y=-x2+6x-5   得A(4,3),f2(x)=-x2+6x-5的顶点坐标为B(3,4)

要使方程g(x)=a有四个不同的实数解,即函数g(x)的图象与函数y=a的图象有四个不同交点

数形结合可得3<a<4

故选D

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

h(x)=x+
m
x
x∈[
1
4
,5]
,其中m是不等于零的常数,
(1)(理)写出h(4x)的定义域;
(文)m=1时,直接写出h(x)的值域;
(2)(文、理)求h(x)的单调递增区间;
(3)已知函数f(x)(x∈[a,b]),定义:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函数f(x)在D上的最小值,maxf(x)|x∈D表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(理)当m=1时,设M(x)=
h(x)+h(4x)
2
+
|h(x)-h(4x)|
2
,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范围;
(文)当m=1时,|h1(x)-h2(x)|≤n恒成立,求n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
x+1(x≥1)
3-x(x<1)
,则f(f(-1))的值为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

f(x)=
x+1(x≥1)
3-x(x<1)
,则f(f(-1))的值为(  )
A.5B.4C.
5
2
D.-1

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案