精英家教网 > 高中数学 > 题目详情
4.某几何体的正视图和侧视图如图①,它的俯视图的直观图为矩形O1A1B1C1如图②,其中O1A1=6,O1C1=2,则该几何体的体积为(  )
A.16$\sqrt{2}$B.32$\sqrt{2}$C.32D.64

分析 由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,代入锥体体积公式,可得答案.

解答 解:由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,
由俯视图的直观图为矩形O1A1B1C1,且O1A1=6,O1C1=2,
故底面直观图的面积为12,
故底面面积S=12×$2\sqrt{2}$=24$\sqrt{2}$,
高h=4,
故棱锥的体积V=$\frac{1}{3}Sh$=32$\sqrt{2}$.
故选:B.

点评 本题考查的知识点是棱锥的体积和表面积,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.(1)已知椭圆焦距为8,长半轴长为10,焦点在x轴上,求椭圆标准方程.
(2)已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于$\frac{3}{2}$,则求该双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.命题“若|x|≠3,则x≠3”的真假为真.(填“真”或“假”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.甲、乙两位同学约定周日早上8:00-8:30在学校门口见面,已知他们到达学校的时间是随机的,则甲要等乙至少10分钟才能见面的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{2}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.甲、乙两人玩一种游戏,游戏规则如下:先将筹码放在如下表的正中间D处,投掷一枚质地均匀的硬币,若正面朝上,筹码向右移动一格;若反面朝上,筹码向左移动一格.
ABCDEFG
(1)将硬币连续投掷三次,求筹码停在C处的概率;
(2)将硬币连续投掷三次,现约定:若筹码停在A或B或C或D处,则甲赢;否则,乙赢.问该约定对乙公平吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设命题P:?n∈N,n2>2n,则¬P为(  )
A.?n∈N,n2>2nB.?n∈N,n2≤2nC.?n∈N,n2≤2nD.?n∉N,n2≤2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(Ⅰ)证明:数列{an-n}是等比数列
(Ⅱ)记数列{an}的前n项和为Sn,求证:Sn+1≤4Sn,对任意n∈N*成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,函数y=2$\sqrt{3}$cos(ωx+φ)(ω>0,0≤φ≤$\frac{π}{2}$)的图象与y轴交于点(0,$\sqrt{6}$),周期是π.
(1)求函数解析式,并写出函数图象的对称轴方程和对称中心;
(2)已知点A($\frac{π}{2}$,0),点P是该函数图象上一点,点Q(x0,y0)是PA的中点,当y0=$\frac{\sqrt{6}}{2}$,x0∈[$\frac{π}{2}$,π]时,求x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.△ABC中,c=$\sqrt{3}$,b=1,∠B=30°,则△ABC的面积等于(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$或$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$

查看答案和解析>>

同步练习册答案