学校从参加高一年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),数学成绩分组及各组频数如下:
[40,50),2;[50,60),3;[60,70),14;[70,80),15;[80,90),12;[90,100],4.
(1)在给出的样本频率分布表中,求A,B,C,D的值;
(2)估计成绩在80分以上(含80分)学生的比例;
(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在[90,100]的学生中选两位同学,共同帮助成绩在[40,50)中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率.样本频率分布表如下:
分组 | 频数 | 频率 |
[40,50) | 2 | 0.04 |
[50,60) | 3 | 0.06 |
[60,70) | 14 | 0.28 |
[70,80) | 15[] | 0.30 |
[80,90) | A | B |
[90,100] | 4 | 0.08 |
合计 | C | D |
(1)A="12" ; B=0.24 ; C="50" ; D="1" ;(2)0.32(3).
解析试题分析:(1)根据题意计算可得[90,100]一组的频数,根据题意中的数据,即可作出A、B、C、D;(2)由(1)可得,成绩在[85,100)的学生数,再结合题意,计算可得答案;(3)根据题意,记成绩在[40,50)上的2名学生为a、甲,在[90,100)内的4名学生记为1、2、3、乙,列举“二帮一”的全部情况,可得其情况数目与甲乙两名同学恰好在同一小组的情况数目,由古典概型公式,计算可得答案.
解:(1)A="12" ; B=0.24 ; C="50" ; D="1" .
(2)估计成绩在80分以上(含80分)的学生比例为
0.24+0.08=0.32.
(3)成绩在[40,50)内有2人,记为甲、A,成绩在[90,100]内有4人,记为乙、B、C、D.则“二帮一”小组有以下12种分组办法:甲乙B,甲乙C,甲乙D,甲BC,甲BD,甲CD,A乙B,A乙C,A乙D,ABC,ABD,ACD.
其中甲、乙两同学被分在同一小组有3种办法:甲乙B,甲乙C,甲乙D.所以甲、乙两同学恰好被安排在同一小组的概率为
P==.
考点:1.列举法计算基本事件数及事件发生的概率;2.用样本的频率分布估计总体分布.
科目:高中数学 来源: 题型:解答题
一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月产量如表(单位:辆):
| 轿车A | 轿车B | 轿车C |
舒适型 | 100 | 150 | z |
标准型 | 300 | 450 | 600 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(13分)(2011•天津)编号为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录如下:
运动员编号 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | |
| 得分 | 15 | 35 | 21 | 28 | 25 | 36 | 18 | 34 |
运动员编号 | A9 | A10 | A11 | A12 | A13 | A14 | A15 | A16 | |
| 得分 | 17 | 26 | 25 | 33 | 22 | 12 | 31 | 38 |
区间 | [10,20) | [20,30) | [30,40] |
人数 | | | |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
为了解某校学生的视力情况,现采用随机抽样的方式从该校的A,B两班中各抽5名学生进行视力检测.检测的数据如下:
A班5名学生的视力检测结果:4.3,5.1,4.6,4.1,4.9.
B班5名学生的视力检测结果:5.1,4.9,4.0,4.0,4.5.
(1)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好?
(2)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明)
(3) 现从A班的上述5名学生中随机选取3名学生,用X表示其中视力大于4.6的人数,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某校高一某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,其可见部分如下,据此解答如下问题:
(1)计算频率分布直方图中[80,90)间的矩形的高;
(2)若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份试卷的分数在之间的概率;
(3)根据频率分布直方图估计这次测试的平均成绩.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
一机器可以按各种不同的速度运转,其生产物件有一些会有缺点,每小时生产有缺点物件的多少随机器运转速度而变化,用表示转速(单位转/秒),用表示每小时生产的有缺点物件个数,现观测得到的4组观测值为(8,5),(12,8),(14,9),(16,11).
(1)假定与之间有线性相关关系,求对的回归直线方程.
(2)若实际生产中所容许的每小时最大有缺点物件数为10,则机器的速度不得超过多少转/秒?(精确到1转/秒)
(参考公式)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
有7位歌手(1至7号)参加一场歌唱比赛, 由500名大众评委现场投票决定歌手名次, 根据年龄将大众评委分为5组, 各组的人数如下:
组别 | A | B | C | D | E |
人数 | 50 | 100 | 150 | 150 | 50 |
组别 | A | B | C | D | E |
人数 | 50 | 100 | 150 | 150 | 50 |
抽取人数 | | 6 | | | |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某公司生产产品A,产品质量按测试指标分为:指标大于或等于90为一等品,大于或等于小于为二等品,小于为三等品,生产一件一等品可盈利50元,生产一件二等品可盈利元,生产一件三等品亏损10元.现随机抽查熟练工人甲和新工人乙生产的这种产品各100件进行检测,检测结果统计如下:
测试指标 | ||||||
甲 | 3 | 7 | 20 | 40 | 20 | 10 |
乙 | 5 | 15 | 35 | 35 | 7 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:
其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,-1代表“生活不能自理”。
(1)随机访问该小区一位80岁以下的老龄人,该老人生活能够自理的概率是多少?
(2)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.求被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com