【题目】已知曲线![]()
(1)求曲线在点
处的切线方程;
(2)求曲线过点
的切线方程
【答案】(1)
;(2)
或
。
【解析】
(1)根据曲线的解析式求出导函数,把
的横坐标代入导函数中即可求出切线的斜率,根据
的坐标和求出的斜率写出切线的方程即可;(2)设出曲线过点
切线方程的切点坐标,把切点的横坐标代入到(1)求出的导函数中即可表示出切线的斜率,根据切点坐标和表示出的斜率,写出切线的方程,把
的坐标代入切线方程即可得到关于切点横坐标的方程,求出方程的解即可得到切点横坐标的值,分别代入所设的切线方程即可.
解:(1)∵
,∴在点
处的切线的斜率
,
∴曲线在点
处的切线方程为
,即
.
(2)设曲线
与过点
的切线相切于点
,
则切线的斜率
,
∴切线方程为
,即
.
∵点
在该切线上,∴
,即
,
∴
,∴
,
∴
,解得
或
.
故所求切线方程为
或
.
科目:高中数学 来源: 题型:
【题目】某轮船公司年初以200万元购进一艘轮船,以每年40万元的价格出租给海运公司.轮船公司负责轮船的维护,第一年维护费为4万元,随着轮船的使用与磨损,以后每年的维护费比上一年多2万元,同时该轮船第
年末可以以
万元的价格出售.
(1)写出轮船公司到第
年末所得总利润
万元关于
的函数解析式,并求
的最大值;
(2)为使轮船公司年平均利润最大,轮船公司应在第几年末出售轮船?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:
![]()
①BD⊥AC;
②△BAC是等边三角形;
③三棱锥D-ABC是正三棱锥;
④平面ADC⊥平面ABC.
其中正确的是( )
A.①②④B.①②③
C.②③④D.①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设相互垂直的直线
,
分别过椭圆
的左、右焦点
,
,且与椭圆
的交点分别为
、
和
、
.
(1)当
的倾斜角为
时,求以
为直径的圆的标准方程;
(2)问是否存在常数
,使得
恒成立?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
与点
.
(1)求椭圆
的方程;
(2)设直线
过定点
,且斜率为
,若椭圆
上存在
,
两点关于直线
对称,
为坐标原点,求
的取值范围及
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“工资条里显红利,个税新政人民心”.随着2019年新年钟声的敲响,我国自1980年以来,力度最大的一次个人所得税(简称个税)改革迎来了全面实施的阶段.2019年1月1日实施的个税新政主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括住房、子女教育和赡养老人等.
新旧个税政策下每月应纳税所得额(含税)计算方法及其对应的税率表如下:
旧个税税率表(个税起征点3500元) | 新个税税率表(个税起征点5000元) | |||
缴税级数 | 每月应纳税所得额(含税)=收入-个税起征点 | 税率(%) | 每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除 | 税率(%) |
1 | 不超过1500元部分 | 3 | 不超过3000元部分 | 3 |
2 | 超过1500元至4500元部分 | 10 | 超过3000元至12000元部分 | 10 |
3 | 超过4500元至9000元的部分 | 20 | 超过12000元至25000元的部分 | 20 |
4 | 超过9000元至35000元的部分 | 25 | 超过25000元至35000元的部分 | 25 |
5 | 超过35000元至55000元部分 | 30 | 超过35000元至55000元部分 | 30 |
··· | ··· | ··· | ··· | ··· |
随机抽取某市1000名同一收入层级的
从业者的相关资料,经统计分析,预估他们2019年的人均月收入24000元.统计资料还表明,他们均符合住房专项扣除;同时,他们每人至多只有一个符合子女教育扣除的孩子,并且他们之中既不符合子女教育扣除又不符合赡养老人扣除、只符合子女教育扣除但不符合赡养老人扣除、只符合赡养老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合赡养老人扣除的人数之比是2:1:1:1;此外,他们均不符合其他专项附加扣除.新个税政策下该市的专项附加扣除标准为:住房1000元/月,子女教育每孩1000元/月,赡养老人2000元/月等。
假设该市该收入层级的
从业者都独自享受专项附加扣除,将预估的该市该收入层级的
从业者的人均月收入视为其个人月收入.根据样本估计总体的思想,解决如下问题:
(1)设该市该收入层级的
从业者2019年月缴个税为
元,求
的分布列和期望;
(2)根据新旧个税方案,估计从2019年1月开始,经过多少个月,该市该收入层级的
从业者各月少缴交的个税之和就超过2019年的月收入?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,给出下列命题,其中正确命题的个数为
①当
时,
上单调递增;
②当
时,存在不相等的两个实数
,使
;
③当
时,
有3个零点.
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
表示两条不同的直线,
,
,
表示三个不同的平面,给出下列四个命题:
①
,
,
,则
;
②
,
,
,则
;
③
,
,
,则
;
④
,
,
,则![]()
其中正确命题的序号为( )
A. ①② B. ②③ C. ③④ D. ②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com