精英家教网 > 高中数学 > 题目详情
已知数列满足:
(1)求证:数列为等比数列;
(2)求证:数列为递增数列;
(3)若当且仅当的取值范围。
(I)
 ,为首项,以为公比的等比数列;
(II)  是单调递增数列;
(III)

试题分析:(I)
是等差数列

    2分


     5分

为首项,以为公比的等比数列    6分
(II)


  
是单调递增数列      9分
(III)时,
      10分
     12分
       13分
点评:典型题,本题在考查等差数列、等比数列基础知识的同时,有意给出递推关系,增大试题难度,同时通过前n项和最值的讨论,和不等式组解法结合在一起,具有一定综合性。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题14分)
已知等比数列满足,且的等差中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求使  成立的正整数的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在等比数列中,,公比,若,则的值为      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列中,,数列是公比为)的等比数列。
(Ⅰ)求使成立的的取值范围;(Ⅱ)求数列的前项的和

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列的前n项和
(1)求数列的通项公式;
(2)若数列是等比数列,公比为,且满足,求数列的前n项和

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)设数列的前项和为,满足,且
(Ⅰ)求的值;
(Ⅱ)求数列的通项公式;
(Ⅲ)设数列的前项和为,且,证明:对一切正整数, 都有:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在等比数列中,已知,则       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知等比数列的公比为正数,且=2=1,则=(   )
A.B.C.D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

等比数列中,已知,且为递增数列,
________.

查看答案和解析>>

同步练习册答案