精英家教网 > 高中数学 > 题目详情
20.给出下列命题:
①角α的终边与单位圆交于点P,过点P作x轴的垂线,垂足为M,则sinα=|MP|;
②存在x∈(0,$\frac{π}{2}$),使sinx+cosx=$\frac{1}{3}$;
③将函数y=sin(2x+$\frac{π}{4}$)的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移$\frac{π}{4}$个单位长度,得到的函数关于($\frac{π}{2}$,0)成中心对称;
④y=sinx与y=x在定义域R上有且只有一个公共点.
其中错误的命题为①②(把所有符合要求的命题序号都填上).

分析 根据正弦线的定义,可判断①;根据辅助角公式及正弦型函数的图象和性质,可判断②;根据函数图象的变换方式及正弦型函数的图象和性质,可判断③;分析函数f(x)=sinx-x零点的个数,可判断④.

解答 解:①角α的终边与单位圆交于点P,过点P作x轴的垂线,垂足为M,则sinα=$\overrightarrow{MP}$,故错误;
②当x∈(0,$\frac{π}{2}$)时,sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)∈(1,$\sqrt{2}$],$\frac{1}{3}$∉(1,$\sqrt{2}$],故错误;
③将函数y=sin(2x+$\frac{π}{4}$)的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=sin(x+$\frac{π}{4}$)的图象,
再向左平移$\frac{π}{4}$个单位长度,得到的函数y=sin(x+$\frac{π}{2}$)=cosx的图象,关于($\frac{π}{2}$,0)成中心对称,故正确;
④令f(x)=sinx-x,则f′(x)=cosx-1≤0恒成立,故f(x)在R为减函数,
又由f(0)=0,故f(x)有且只有一个零点,故y=sinx与y=x在定义域R上有且只有一个公共点,故④正确;
故错误的命题有:①②,
故答案为:①②

点评 本题以命题的真假判断为载体,考查了三角函数线,正弦型函数的图象和性质,函数图象的变换,函数图象的交点等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设a,b为不重合的两条直线,α,β为不重合的两个平面,给出下列命题:
(1)若a∥α且b∥α,则a∥b;
(2)如果平面α内的两条相交的直线a,b都平行于平面β,那么α∥β;
(3)如果a,b为异面直线,那么a,b所成的角θ的范围是0<θ<π;
(4)如果a,b为异面直线,那么过a,b外一点有且仅有一个平面α与a,b都平行;
上面命题中,所有假命题的序号是(1)(3)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a>b>c,且(a-c)($\frac{1}{a-b}$+$\frac{4}{b-c}$)≥k恒成立,则k的取值范围是k≤9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12,和直线m:y=kx+9.又f′(-1)=0.
(1)求a的值;
(2)如果对于所有x≥-2的x,都有f(x)≤kx+9≤g(x)成立,求k的取值范围.
(3)是否存在k的值,使直线m既是曲线y=f(x)的切线,又是y=g(x)的切线;如果存在,求出k的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1-a}{2}$x2-ax-a(a>0,x∈R)
(I)求函数f(x)的单调区间;
(II)设函数f(x)在区间[0,3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t);求函数g(t)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.定义在R上的偶函数f(x),且f(x)在[0,+∞)上单调递减,则不等式f(lgx)<f(1)的解集是($\frac{1}{10}$,10).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.复数z=$\frac{i}{1+3i}$在复平面上对应点是(  )
A.(-$\frac{3}{8}$,-$\frac{1}{8}$)B.(-$\frac{3}{8}$,$\frac{1}{8}$)C.($\frac{3}{10}$,-$\frac{1}{10}$)D.($\frac{3}{10}$,$\frac{1}{10}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某高校经济管理学院在2014年11月11日“双11购物节”期间,对[25,55]岁的人群随机抽取了100人进行调查,得到各年龄段人数频率分布直方图.同时对这100人是否参加“商品抢购”进行统计,结果如下表:
(1)求统计表中a和p的值;
(2)从年龄落在(40,50]内的参加“商品抢购”的人群中,采用分层抽样法抽取6人参加满意度调查,在抽取的6人中,有随机的2人感到“满意”,设感到“满意”的2人中年龄在(40,45]内的人数为X,求X的分布列和数学期望.
(3)通过有没有95%的把握认为,进行“商品抢购”与“年龄低于40岁”有关?说明你的理由.
 组数 分组 抢购商品的人数 占本组的频率
 第一组[25,30) 12 0.6
 第二组 
[30,35)
 18 p
 第三组 
[35,40)
 10 0.5
 第四组 
[40,45)
 a 0.4
 第五组 
[45,50)
 3 0.3
 第六组 
[50,55)
 1 0.2
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$
P(χ2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=log2(2x-x2)的增区间为(0,1).

查看答案和解析>>

同步练习册答案