µÈ±ÈÊýÁÐ{an} ÖУ¬a1£¬a2£¬a3·Ö±ðÊÇϱíµÚÒ»¡¢¶þ¡¢ÈýÐÐÖеÄijһ¸öÊý£¬ÇÒa1£¬a2£¬a3ÖеÄÈκÎÁ½¸öÊý²»ÔÚϱíµÄͬһÁУ®
µÚÒ»ÁÐ µÚ¶þÁÐ µÚÈýÁÐ
µÚÒ»ÐÐ 3 2 10
µÚ¶þÐÐ 6 4 14
µÚÈýÐÐ 9 8 18
£¨¢ñ£©ÇóÊýÁÐ{an} µÄͨÏʽ£»
£¨¢ò£©ÈôÊýÁР{bn} Âú×ã bn=
1
(n+2)log3(
an+1
2
)
£¬¼ÇÊýÁР{bn} µÄÇ°nÏîºÍΪSn£¬Ö¤Ã÷Sn£¼
3
4
£®
£¨I£©µ±a1=3ʱ£¬²»ºÏÌâÒ⣻
µ±a1=2ʱ£¬µ±ÇÒ½öµ±a2=6£¬a3=18ʱ£¬·ûºÏÌâÒ⣻
µ±a1=10ʱ£¬²»ºÏÌâÒ⣮¡­£¨4·Ö£©£¨Ö»ÒªÕÒ³öÕýÈ·µÄÒ»×é¾Í¸ø3·Ö£©
Òò´Ëa1=2£¬a2=6£¬a3=18£¬
ËùÒÔ¹«±Èq=3£¬¡­£¨4·Ö£©
¹Êan=2•3n-1£®¡­£¨6·Ö£©
£¨II£©ÒòΪbn=
1
(n+2)log3(
an+1
2
)
£¬
ËùÒÔbn=
1
n(n+2)
¡­£¨9·Ö£©
ËùÒÔSn=b1+b2+b3+¡­+bn¡­£¨10·Ö£©
=
1
1¡Á3
+
1
2¡Á4
+
1
3¡Á5
+ ¡­+
1
n¡Á(n+2)
¡­

=
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+¡­+
1
n
-
1
n+2
)
¡­£¨12·Ö£©
=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)£¼
3
4
£¬
¹ÊSn£¼
3
4
£®¡­£¨14·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

µÈ±ÈÊýÁÐ{an}ÖУ¬a2=18£¬a4=8£¬Ôò¹«±ÈqµÈÓÚ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ±ÈÊýÁÐ{an}ÖУ¬a1=0£¬an+1=
1
2-an
£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽan£»
£¨¢ò£©ÉèÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬Ö¤Ã÷£ºSn£¼n-ln£¨n+1£©£»
£¨¢ó£©Éèbn=an£¨
9
10
£©n£¬Ö¤Ã÷£º¶ÔÈÎÒâµÄÕýÕûÊýn¡¢m£¬¾ùÓÐ|bn-bm|£¼
3
5
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔڵȱÈÊýÁÐ{an}ÖУ¬a3=2£¬a7=32£¬Ôòa5=
8
8
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ±ÈÊýÁÐ{an}ÖУ¬an=2¡Á3n-1£¬ÔòÓÉ´ËÊýÁеÄÆæÊýÏîËù×é³ÉµÄÐÂÊýÁеÄÇ°nÏîºÍΪ
9n-1
4
9n-1
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔڵȱÈÊýÁÐ{an}ÖУ¬ÒÑÖª¶Ôn¡ÊN*ÓÐa1+a2+¡­+an=2n-1£¬ÄÇô
a
2
1
+
a
2
2
+¡­+
a
2
n
µÈÓÚ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸