精英家教网 > 高中数学 > 题目详情
15.已知函数$f(x)=-\frac{1}{3}{x^3}+{x^2}+({{m^2}-1})x$(x∈R),其中m>0为常数.
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)的单调区间与极值.

分析 (1)根据m=1,我们易求出f(1)及f′(1)的值,代入点斜式方程即可;
(2)由已知我们易求出函数的导函数,令导函数值为0,我们则求出导函数的零点,根据m>0,我们可将函数的定义域分成若干个区间,分别在每个区间上讨论导函数的符号,即可得到函数的单调区间.

解答 解:(1)当m=1时,f(x)=-$\frac{1}{3}$x3+x2,f′(x)=-x2+2x,故f′(1)=1.
所以曲线y=f(x)在点(1,f(1))处的切线的斜率为1,
而f(1)=$\frac{2}{3}$,
故切线方程是:y-$\frac{2}{3}$=x-1,
整理得:y=x-$\frac{1}{3}$;
(2)f′(x)=-x2+2x+m2-1.
令f′(x)=0,解得x=1-m,或x=1+m.
因为m>0,所以1+m>1-m.
当x变化时,f′(x),f(x)的变化情况如下表:

x(-∞,1-m)1-m(1-m,1+m)1+m(1+m,+∞)
f′(x)-0+0-
f(x)递减极小值递增极大值递减
所以f(x)在(-∞,1-m),(1+m,+∞)内是减函数,在(1-m,1+m)内是增函数.
函数的极小值为:f(1-m)=-$\frac{2}{3}$m3+m2-$\frac{1}{3}$;
函数的极大值为:f(1+m)=$\frac{2}{3}$m3+m2-$\frac{1}{3}$.

点评 本题考查的知识点是利用导数研究函数的单调性,利用导数研究曲线上某点切线方程,其中根据已知函数的解析式求出导函数的解析式是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知|$\overrightarrow{a}$|=2,向量$\overrightarrow{a}$在向量$\overrightarrow{b}$上的投影为$\sqrt{3}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点A(0,1),B(-2,1),向量$\overrightarrow e=(1,0)$,则$\overrightarrow{AB}$在$\overrightarrow e$方向上的投影为(  )
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.定义函数${f_a}(x)={4^x}-(a+1)•{2^x}+a$,其中x为自变量,a为常数.
(I)若当x∈[0,2]时,函数fa(x)的最小值为一1,求a之值;
(II)设全集U=R,集A={x|f3(x)≥fa(0)},B={x|fa(x)+fa(2-x)=f2(2)},且(∁UA)∩B≠∅中,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.椭圆的中心在原点,长轴在x轴上,一焦点与短轴的两端点的连线互相垂直,焦点与长轴上较近顶点的距离为$4({\sqrt{2}-1})$,则此椭圆的方程是(  )
A.$\frac{x^2}{16}+\frac{y^2}{32}=1$B.$\frac{x^2}{32}+\frac{y^2}{4}=1$C.$\frac{x^2}{32}+\frac{y^2}{16}=1$D.$\frac{x^2}{64}+\frac{y^2}{32}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若直线l经过点(a-2,-1)和(-a-2,1),且与直线2x+3y+1=0垂直,则实数a的值为(  )
A.-$\frac{2}{3}$B.-$\frac{3}{2}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,网格上小正方形的边长为1,粗线画出的是一个三棱锥的三视图,该三棱锥的外接球的体积记为V1,俯视图绕底边AB所在直线旋转一周形成的几何体的体积记为V2,则V1:V2(  )
A.4$\sqrt{2}$B.2$\sqrt{2}$C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在锐角△ABC中,a,b,c分别是A,B,C的对边,a=2bsinA.
(1)求B的大小;
(2)若a=$\sqrt{2}$,b=1,求A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.有下面四个命题:
①若$\lim_{n→∞}a_n^2={A^2}$,则$\lim_{n→∞}{a_n}=A$;
②若an>0,$\lim_{n→∞}{a_n}=A$,则A>0;
③若$\lim_{n→∞}{a_n}=A$,则$\lim_{n→∞}a_n^2={A^2}$;
④若$\lim_{n→∞}({a_n}-{b_n})=0$,则$\lim_{n→∞}{a_n}=\lim_{n→∞}{b_n}$;
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案