精英家教网 > 高中数学 > 题目详情
18.有下面四个命题:
①若$\lim_{n→∞}a_n^2={A^2}$,则$\lim_{n→∞}{a_n}=A$;
②若an>0,$\lim_{n→∞}{a_n}=A$,则A>0;
③若$\lim_{n→∞}{a_n}=A$,则$\lim_{n→∞}a_n^2={A^2}$;
④若$\lim_{n→∞}({a_n}-{b_n})=0$,则$\lim_{n→∞}{a_n}=\lim_{n→∞}{b_n}$;
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

分析 运用极限的概念,举例和推理,可得①②④都错,③正确.

解答 解:①若$\lim_{n→∞}a_n^2={A^2}$,则$\lim_{n→∞}{a_n}=A$或-A,故①错;
②若an>0,$\lim_{n→∞}{a_n}=A$,则A>0,比如an=$\frac{1}{n}$,$\underset{lim}{n→∞}$$\frac{1}{n}$=0,即A=0,故②错;
③若$\lim_{n→∞}{a_n}=A$,则$\lim_{n→∞}a_n^2={A^2}$,故③正确;
④若$\lim_{n→∞}({a_n}-{b_n})=0$,则$\lim_{n→∞}{a_n}=\lim_{n→∞}{b_n}$,不一定成立,比如an=bn=n,
则an,bn的极限不存在,故④错;
故选:A.

点评 本题考查数列极限的运算性质,注意运用极限的概念,考查推理能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=-\frac{1}{3}{x^3}+{x^2}+({{m^2}-1})x$(x∈R),其中m>0为常数.
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知空间四边形ABCD中,AB=CD=6,BC=DA=8,BD=AC=7,求异面直线AB与CD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.焦点在y轴的椭圆x2+ky2=1的长轴长是短轴长的2倍,那么k等于$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线l经过点(3,2),且在两坐标轴上的截距相等,则直线l的方程是x+y=5或2x-3y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5
(1)求{an}的通项公式
(2)求数列{(2-an)2n} 的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知二次函数f(x)与x轴的两个交点分别是(-3,0),(5,0),且f(2)=15.
(1)求函数f(x)的解析式;
(2)令g(x)=(2-2m)x-f(x),求函数g(x)在x∈[0,2]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义在(-∞,0)∪(0,+∞)上的奇函数f(x),若函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式$\frac{f(x)}{x}<0$的解集为(-1,0)∪(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四边形ABCD是边长为2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF,BE与平面ABCD所成角为45°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-D的大小.

查看答案和解析>>

同步练习册答案