精英家教网 > 高中数学 > 题目详情
9.已知空间四边形ABCD中,AB=CD=6,BC=DA=8,BD=AC=7,求异面直线AB与CD所成的角.

分析 如图所示,构造长方体,连接EF,则EF∥CD,EF=CD,证明AB⊥CD,即可求出异面直线AB与CD所成的角.

解答 解:如图所示,构造长方体,连接EF,则EF∥CD,EF=CD
∵AB=CD=6,
∴AB=EF=6,
∴AB⊥EF,
∴AB⊥CD,
∴异面直线AB与CD所成的角为90°.

点评 本题考查异面直线AB与CD所成的角,考查构造方法的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知点A(0,1),B(-2,1),向量$\overrightarrow e=(1,0)$,则$\overrightarrow{AB}$在$\overrightarrow e$方向上的投影为(  )
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,网格上小正方形的边长为1,粗线画出的是一个三棱锥的三视图,该三棱锥的外接球的体积记为V1,俯视图绕底边AB所在直线旋转一周形成的几何体的体积记为V2,则V1:V2(  )
A.4$\sqrt{2}$B.2$\sqrt{2}$C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在锐角△ABC中,a,b,c分别是A,B,C的对边,a=2bsinA.
(1)求B的大小;
(2)若a=$\sqrt{2}$,b=1,求A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.方程$\left\{\begin{array}{l}{x={2}^{t}-{2}^{-t}}\\{y={2}^{t}+{2}^{-t}}\end{array}\right.$(t为参数)表示的曲线是(  )
A.双曲线B.双曲线的上支C.双曲线的下支D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.菱形ABCD中,E,F分别是AD,CD中点,若∠BAD=60°,AB=2,则$\overrightarrow{AF}$•$\overrightarrow{BE}$=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow i$与$\overrightarrow j$不共线,且$\overrightarrow{AB}=\overrightarrow i+m\overrightarrow j,\overrightarrow{AD}$=$n\overrightarrow i+\overrightarrow j,m≠1$,若A,B,D三点共线,则实数m,n满足的条件是(  )
A.mn=1B.mn=-1C.m+n=-1D.m+n=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.有下面四个命题:
①若$\lim_{n→∞}a_n^2={A^2}$,则$\lim_{n→∞}{a_n}=A$;
②若an>0,$\lim_{n→∞}{a_n}=A$,则A>0;
③若$\lim_{n→∞}{a_n}=A$,则$\lim_{n→∞}a_n^2={A^2}$;
④若$\lim_{n→∞}({a_n}-{b_n})=0$,则$\lim_{n→∞}{a_n}=\lim_{n→∞}{b_n}$;
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在等比数列{an}中,a4•a6=5,则a2•a3•a7•a8=25.

查看答案和解析>>

同步练习册答案