| A. | 双曲线 | B. | 双曲线的上支 | C. | 双曲线的下支 | D. | 圆 |
分析 方程$\left\{\begin{array}{l}{x={2}^{t}-{2}^{-t}}\\{y={2}^{t}+{2}^{-t}}\end{array}\right.$(t为参数),消去参数,即可得出表示的曲线.
解答 解:$\left\{\begin{array}{l}{x={2}^{t}-{2}^{-t}}\\{y={2}^{t}+{2}^{-t}}\end{array}\right.$(t为参数),可得x+y=2•2t,y-x=2•2-t,
∴(x+y)(y-x)=4(y>x>0),即y2-x2=4(y>x>0),
∴方程$\left\{\begin{array}{l}{x={2}^{t}-{2}^{-t}}\\{y={2}^{t}+{2}^{-t}}\end{array}\right.$(t为参数)表示的曲线是双曲线的上支,
故选B.
点评 本题考查参数方程与普通方程的互化,考查学生的计算能力,比较基础.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{3}$ | B. | $\sqrt{2}$ | C. | $\frac{5}{4}$ | D. | $\frac{5}{3}$或$\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com