精英家教网 > 高中数学 > 题目详情
6.已知等差数列{an}满足:a2=5,a5=11,其前n项和为Sn
(1)求an及Sn
(2)令bn=$\frac{4}{{{a_n}^2-1}}({n∈{N^*}})$,求数列{bn}的前n项和Tn

分析 (1)求出数列的首项与公差,然后求解通项公式以及数列和.
(2)化简数列的通项公式,利用裂项消项法求解数列的和即可.

解答 解:(1)设数列的首项为a1,公差为d.因为a2=5,a5=11,所以d=$\frac{{a}_{5}-{a}_{2}}{5-2}$=2,
可得a1=3,所以an=3+2(n-1)=2n+1,
Sn=$\frac{n({a}_{1}+{a}_{n})}{2}$=n2+2n.
(2)由(1)可知an=2n+1,
所以bn=$\frac{4}{{{a}_{n}}^{2}-1}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
所以Tn=1$-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n}$$-\frac{1}{n+1}$=$\frac{n}{n+1}$.
数列{bn}的前n项和Tn为:$\frac{n}{n+1}$.

点评 本题考查数列的求和,等差数列的通项公式的求法,裂项相消法的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.下列几何体各自的三视图中,只有两个视图相同的是(  )
A.①③B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若一个圆锥的底面半径是母线长的一半,侧面积的数值是它的体积的数值的$\frac{1}{2}$,则该圆锥的底面半径为(  )
A.$\sqrt{3}$B.2$\sqrt{2}$C.2$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“x>5”是“x>3”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,九日二马相逢,则长安至齐(  )
A.1120里B.2250里C.3375里D.1125里

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.方程$\left\{\begin{array}{l}{x={2}^{t}-{2}^{-t}}\\{y={2}^{t}+{2}^{-t}}\end{array}\right.$(t为参数)表示的曲线是(  )
A.双曲线B.双曲线的上支C.双曲线的下支D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.极限$\underset{lim}{x→+∞}$$\frac{{x}^{8}(1+2x)^{6}}{(3x+1)^{14}}$=$\frac{64}{{3}^{14}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设m,n为两条不同的直线,α,β为两个不同的平面,下列命题中为真命题的是(  )
A.若m∥α,n∥α,则 m∥nB.若m⊥α,α⊥β,则 m∥β
C.若m∥α,α⊥β,则 m⊥βD.若m⊥α,m∥β,则 α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=\frac{{-a{x^2}-2ax+3}}{{{x^2}+2x+2}}$.
(1)若a=0,求f(x)的值域;
(2)当a=1时,解方程f(x)=0;
(3)若对于任意的实数x,都有f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案