精英家教网 > 高中数学 > 题目详情
已知f(x)=
1
x
-1

(1)求函数f(x)的定义域;
(2)判断并用定义证明函数f(x)的单调性.
分析:(1)由题意列出
1
x
-1≥0
,通分变形后求出不等式得解集,是所求的定义域;
(2)先根据解析式判断出是减函数,再用定义法证明函数在定义域内是减函数.
解答:解:(1)要使函数有意义,则
1
x
-1≥0
,即
x-1
x
≥0,
解得0<x≤1,则所求的定义域为(0,1].
(2)f(x)在(0,1)内单调递减,证明如下:
设0<x1<x2≤1
f(x2)-f(x1)=
1
x2
-1
-
1
x1
-1
=
x1-x2
x2x1
1
x2
-1
+
1
x1
-1
<0

即f(x2)<f(x1),∴函数f(x)在(0,1]上单调递减.
点评:本题考查了函数的定义域的求法,即利用偶次根号下被开方数大于等于零,列出不等式进行化简求解,证明函数的单调性必须用定义法去证.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例2、(1)已知f(x+
1
x
)=x3+
1
x3
,求f(x).
(2)已知f(
2
x
+1)=lgx
,求f(x).
(3)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x).
(4)已知f(x)满足2f(x)+f(
1
x
)=3x
,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x+
1
x
)=x2+
1
x2
-x-
1
x
-2,则f(x)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
x+1
(x≤1)
x-1
(x>1)
,则f[f(2)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x-
1
x
) =x2+
1
x2
,则f(x+1)的表达式为
(x+1)2+2
(x+1)2+2

查看答案和解析>>

同步练习册答案