精英家教网 > 高中数学 > 题目详情

用反证法证明命题“三角形的内角至多有一个钝角”时,假设的内容应为( )

A.假设至少有一个钝角 B.假设至少有两个钝角 
C.假设没有一个钝角 D.假设没有一个钝角或至少有两个钝角 

B

解析试题分析:反证明法的证明步骤:1.假设命题不成立
2.由假设出发,经过推理论证,得出矛盾
3.由矛盾得出假设不成立,从而证明原命题正确
本题中至多有一个钝角的反面是至少有两个是钝角。
考点:反证法的方法及基本步骤

练习册系列答案
相关习题

科目:高中数学 来源: 题型:单选题

用数学归纳法证明:“1+a+a2+ +an+1 (a≠1,n∈N*)”在验证n=1时,左端计算所得的项为(   )

A.1 B.1+a 
C.1+a+a2 D.1+a+a2+a3 

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

①由“若a,b,c∈R,则(ab)c=a(bc)”类比“若a、b、c为三个向量,则(a·b)c=a(b·c)”;
②在数列{an}中,a1=0,an+1=2an+2,猜想an=2n-2;
③在平面内“三角形的两边之和大于第三边”类比在空间中“四面体的任意三个面的面积之和大于第四个面的面积”;
上述三个推理中,正确的个数为(  )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

用反证法证明命题“三角形的内角中至多有一个钝角”时,假设正确的是( )

A.三个内角中至少有一个钝角
B.三个内角中至少有两个钝角
C.三个内角都不是钝角
D.三个内角都不是钝角或至少有两个钝角

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

用反证法证明命题:“若整系数一元二次方程有有理根,那么中至少有一个是偶数时,下列假设中正确的是

A.假设都是偶数
B.假设都不是偶数
C.假设至多有一个是偶数
D.假设至多有两个是偶数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

写出一个求y=︱x-1︱的值的一个程序

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

用数学归纳法证明1++…+> (n∈N*)成立,其初始值至少应取(  )

A.7 B.8 C.9 D.10

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从n=k到n=k+1,左边需增添的代数式是(  )

A.2k+2 B.2k+3
C.2k+1 D.(2k+2)+(2k+3)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

用反证法证明“a,b,c中至少有一个大于0”,下列假设正确的是(  )

A.假设a,b,c都小于0
B.假设a,b,c都大于0
C.假设a,b,c中都不大于0
D.假设a,b,c中至多有一个大于0

查看答案和解析>>

同步练习册答案