精英家教网 > 高中数学 > 题目详情
如图1-2-6,直线l1l2l3,直线mn分别交直线l1l2l3于点ABCDEF,mn交于O点,AB =2,AC =5,EF =3,求DE.

图1-2-6

思路解析:要求DE的长,可以结合条件,直接利用“平行线分线段成比例”定理.

解:∵l1l2l3,AB =2,AC =5,EF =3,?

=, =.

DE =2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)如图(1),在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分别是AC、AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图(2).
①求直线A1E与平面CBED所成角的正弦值;
②求平面A1CD与平面A1BE所成锐角的余弦值;
③在线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?若存在,求出CP的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化二模)如图展示了一个由区间(0,k)(其中k为一正实数)到实数集R上的映射过程:区间(0,k)中的实数m对应线段AB上的点M,如图1;将线段AB围成一个离心率为
3
2
的椭圆,使两端点A、B恰好重合于椭圆的一个短轴端点,如图2;再将这个椭圆放在平面直角坐标系中,使其中心在坐标原点,长轴在x轴上,已知此时点A的坐标为(0,1),如图3,在图形变化过程中,图1中线段AM的长度对应于图3中的椭圆弧ADM的长度.图3中直线AM与直线y=-2交于点N(n,-2),则与实数m对应的实数就是n,记作f(m)=n,

现给出下列5个命题①f(
k
2
)=6
;②函数f(m)是奇函数;③函数f(m)在(0,k)上单调递增;④函数f(m)的图象关于点(
k
2
,0)
对称;⑤函数f(m)=3
3
时AM过椭圆的右焦点.其中所有的真命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

由一个小区历年市场行情调查得知,某一种蔬菜在一年12个月内每月销售量P(t)(单位:吨)与上市时间t(单位:月)的关系大致如图(1)所示的折线ABCDE表示,销售价格Q(t)(单位:元/千克)与上市时间t(单位:月)的大致关系如图(2)所示的抛物线段GHR表示(H为顶点).
(Ⅰ)请分别写出P(t),Q(t)关于t的函数关系式,并求出在这一年内3到6月份的销售额最大的月份?
(Ⅱ)图(1)中由四条线段所在直线 围成的平面区域为M,动点P(x,y)在M内(包括边界),求z=x-5y的最大值;
(Ⅲ) 由(Ⅱ),将动点P(x,y)所满足的条件及所求的最大值由加法运算类比到乘法运算(如1≤2x-3y≤3类比为1≤
x2y3
≤3
),试列出P(x,y)所满足的条件,并求出相应的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

三个12 cm×12 cm的正方形都被连结两条邻边的中点的直线分成A、B两片,如图(1);把6片粘在一个正六边形的外面,如图(2);然后折成多面体,如图(3).在此多面体中E-F=_________.

查看答案和解析>>

同步练习册答案