¾«Ó¢¼Ò½ÌÍøÒÑÖªµãD£¨0£¬-2£©£¬¹ýµãD×÷Å×ÏßC1£ºx2=2py£¨p£¾0£©µÄÇÐÏßl£¬ÇеãAÔÚµÚÒ»ÏóÏÞ£¬Èçͼ£®
£¨1£©ÇóÇеãAµÄ×Ý×ø±ê£»
£¨2£©ÈôÀëÐÄÂÊΪ
3
2
µÄÍÖÔ²C£º
y2
a 2
+
x2
b2
=1£¨a£¾b£¾0£©Ç¡ºÃ¾­¹ýÇеãA£¬ÉèÇÐÏßl½»ÍÖÔ²µÄÁíÒ»µãΪB£¬¼ÇÇÐÏßl£¬OA£¬OBµÄбÂÊ·Ö±ðΪk£¬k2£¬k3£¬Èô2k1+k2=3k£¬ÇóÅ×ÎïÏßC1ºÍÍÖÔ²C2µÄ·½³Ì£®
£¨3£©ÉèP¡¢Q·Ö±ðÊÇ£¨2£©ÖеÄÍÖÔ²C2µÄÓÒ¶¥µãºÍÉ϶¥µã£¬MÊÇÍÖÔ²C2ÔÚµÚÒ»ÏóÏÞµÄÈÎÒâÒ»µã£¬ÇóËıßÐÎOPMQÃæ»ýµÄ×î´óÖµÒÔ¼°´ËʱMµãµÄ×ø±ê£®
·ÖÎö£º£¨1£©ÉèÇеãAµÄ×ø±ê£¬µÃÇÐÏߵķ½³Ì£¬¸ù¾ÝµãD£¨0£¬-2£©ÔÚlÉÏ£¬´Ó¶ø¿ÉÇóÇеãAµÄ×Ý×ø±ê£»
£¨2£©ÓÉe=
3
2
µÃa2=4b2£¬´Ó¶øÓÐÍÖÔ²·½³ÌΪ
y2
4b2
+
x2
b2
=1
£¬½«Ö±ÏßÓëÍÖÔ²ÁªÁ¢
y=kx-2
y2+4x2=4b2
µÃ£¨k2+4£©x2-4kx+4-4b2=0£¬ÀûÓÃ2k1+k2=3k¿ÉÇóÅ×ÎïÏßC1ºÍÍÖÔ²C2µÄ·½³Ì£®
£¨3£©ÉèM£¨m£¬n£©£¨m£¬n£¾0£©£¬Ôò4m2+n2=20£¬±íʾ³öËıßÐÎOPMQÃæ»ý£¬ÀûÓûù±¾²»µÈʽÇó×î´óÖµ£¬´Ó¶øÇó³öMµÄ×ø±ê£®
½â´ð£º½â£º£¨1£©ÉèÇеãA(x1£¬ y1)£¬y1=
x
2
1
2p
£¬ÇÐÏߵķ½³ÌΪx1x=p£¨y1+y£©£¬ÓÖµãD£¨0£¬-2£©ÔÚlÉÏ£¬ËùÒÔy1=2£¬¼´ÇеãAµÄ×Ý×ø±êΪ2£»
£¨2£©ÓÉ£¨1£©µÃA(2
p
£¬2)
£¬ÇÐÏßбÂÊk=
2
p
¢Ù£¬ÉèB£¨x2£¬y2£©£¬ÇÐÏß·½³Ìy=kx-2£¬ÓÉe=
3
2
µÃa2=4b2£¬¡àÍÖÔ²·½³ÌΪ
y2
4b2
+
x2
b2
=1
ÇÒ¹ýµãA(2
p
£¬2)

ÓÉ
y=kx-2
y2+4x2=4b2
µÃ£¨k2+4£©x2-4kx+4-4b2=0£¬¡à
x1+x2
4k
k2+4
x1x2=
4-4b
k2 +4
 
¢Ú
ÓÉ2k1+k2=3k¿ÉµÃ2x1+4x2=0£¬¡àx1=2
p
£¬x2=-
p
´úÈë¢Ú½âµÃk=2£¬b2=5£¬¡àa2=20£¬¡àp=1
ËùÒÔÅ×ÎïÏßC1µÄ·½³ÌΪx2=2y£¬ÍÖÔ²C2µÄ·½³Ì
y2
20
+
x2
5
=1

£¨3£©ÉèM£¨m£¬n£©£¨m£¬n£¾0£©£¬Ôò4m2+n2=20£¬S=
1
2
(
20
m+
5
n)=
5
2
(2m+n)¡Ü
5
2
¡Á
10
=
5
2
2
£¬µ±ÇÒ½öµ±2m=n£¬¼´m=
10
2
£¬n=
10
ʱ£¬È¡¡°=¡±£¬¹ÊËıßÐÎOPMQÃæ»ýµÄ×î´óֵΪ
5
2
2
£¬MµÄ×ø±êΪ(
10
2
£¬
10
)
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÅ×ÎïÏßµÄÇÐÏß·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØϵ¼°ÀûÓûù±¾²»µÈʽÇóÃæ»ýµÄ×îÖµ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµãD£¨0£¬-2£©£¬¹ýµãD×÷Å×ÎïÏßC1£ºx2=2py£¨p£¾0£©µÄÇÐÏßl£¬ÇеãAÔÚµÚ¶þÏóÏÞ£¬Èçͼ
£¨¢ñ£©ÇóÇеãAµÄ×Ý×ø±ê£»
£¨¢ò£©ÈôÀëÐÄÂÊΪ
3
2
µÄÍÖÔ²
x2
a2
+
y2
b2
=1(a£¾b£¾0)
Ç¡ºÃ¾­¹ýÇеãA£¬ÉèÇÐÏßl½»ÍÖÔ²µÄÁíÒ»µãΪB£¬¼ÇÇÐÏßl£¬OA£¬OBµÄбÂÊ·Ö±ðΪk£¬k1£¬k2£¬Èôk1+2k2=4k£¬ÇóÍÖÔ²·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•»ÆÖÝÇøÄ£Ä⣩Èçͼ£¬ÒÑÖªµãD£¨0£¬-2£©£¬¹ýµãD×÷Å×ÎïÏßC1£ºx2=2py£¨p¡Ê[1£¬4]µÄÇÐÏßl£¬ÇеãAÔÚµÚ¶þÏóÏÞ£®
£¨1£©ÇóÇеãAµÄ×Ý×ø±ê£»
£¨2£©ÈôÀëÐÄÂÊΪ
3
2
µÄÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾c£©Ç¡ºÃ¾­¹ýAµã£¬ÉèÇÐÏßl½»ÍÖÔ²µÄÁíÒ»µãΪB£¬ÈôÉèÇÐÏßl£¬Ö±ÏßOA£¬OBµÄбÂÊΪk£¬k1£¬k2£¬¢ÙÊÔÓÃбÂÊk±íʾk1+k2¢Úµ±k1+k2È¡µÃ×î´óֵʱÇó´ËʱÍÖÔ²µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2013ÄêÕã½­Ê¡º¼ÖÝÊÐÖصã¸ßÖи߿¼ÃüÌâ±ÈÈüÊýѧ²ÎÈüÊÔ¾í08£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖªµãD£¨0£¬-2£©£¬¹ýµãD×÷Å×ÎïÏßC1£ºx2=2py£¨p£¾0£©µÄÇÐÏßl£¬ÇеãAÔÚµÚ¶þÏóÏÞ£¬Èçͼ
£¨¢ñ£©ÇóÇеãAµÄ×Ý×ø±ê£»
£¨¢ò£©ÈôÀëÐÄÂÊΪµÄÍÖԲǡºÃ¾­¹ýÇеãA£¬ÉèÇÐÏßl½»ÍÖÔ²µÄÁíÒ»µãΪB£¬¼ÇÇÐÏßl£¬OA£¬OBµÄбÂÊ·Ö±ðΪk£¬k1£¬k2£¬Èôk1+2k2=4k£¬ÇóÍÖÔ²·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011-2012ѧÄêºþ±±Ê¡»Æ¸ÔÖÐѧµÈ°ËУ¸ßÈýµÚ¶þ´ÎÁª¿¼ÊýѧÊÔ¾í£¨ÎÄ¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÒÑÖªµãD£¨0£¬-2£©£¬¹ýµãD×÷Å×ÎïÏßC1£ºx2=2py£¨p¡Ê[1£¬4]µÄÇÐÏßl£¬ÇеãAÔÚµÚ¶þÏóÏÞ£®
£¨1£©ÇóÇеãAµÄ×Ý×ø±ê£»
£¨2£©ÈôÀëÐÄÂÊΪµÄÍÖÔ²+=1£¨a£¾b£¾c£©Ç¡ºÃ¾­¹ýAµã£¬ÉèÇÐÏßl½»ÍÖÔ²µÄÁíÒ»µãΪB£¬ÈôÉèÇÐÏßl£¬Ö±ÏßOA£¬OBµÄбÂÊΪk£¬k1£¬k2£¬¢ÙÊÔÓÃбÂÊk±íʾk1+k2¢Úµ±k1+k2È¡µÃ×î´óֵʱÇó´ËʱÍÖÔ²µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸