精英家教网 > 高中数学 > 题目详情
如图,将四棱锥S-ABCD的每一个顶点染上一种颜色,并使同一条棱的两端点异色.如果只有5种不同的颜色可供选择,那么不同的染色方法共有多少种?

解析:将四棱锥S-ABCD沿侧棱剪开展在同一平面上(如图),

由题设知,点S,A,B所染色互不相同,它们共有5×4×3=60种不同的染色方法.为叙述方便,把5种不同的颜色分别记为1,2,3,4,5.当S,A,B染好色后,不妨设它们分别染色为1,2,3.若C染色2,则D可染3,4,5中的任一种色,有3种染法;若C染色4,则D可染3或5,有2种染法;若C染色5,则D可染3或4,也有2种染法.根据分步原理,总的染色方法有N=60×(3+2+2)=420(种).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江西)如图,已知正四棱锥S-ABCD所有棱长都为1,点E是侧棱SC上一动点,过点E垂直于SC的截面将正四棱锥分成上、下两部分.记SE=x(0<x<1),截面下面部分的体积为V(x),则函数y=V(x)的图象大致为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

一块边长为10的正方形纸片,按如图所示将阴影部分裁下,然后将余下的四个全等的等腰三角形作为侧面制作一个正四棱锥S-ABCD(底面是正方形,顶点在底面的射影是底面中心的四棱锥).
(1)过此棱锥的高以及一底边中点F作棱锥的截面(如图),设截面三角形面积为y,求y的最大值及y取最大值时的x的值;
(2)空间一动点P满足
SP
=a
SA
+b
SB
+c
SC
(a+b+c=1),在第(1)问的条件下,求|
SP
|
的最小值,并求取得最小值时a,b,c的值;
(3)在第(1)问的条件下,设F是CD的中点,问是否存在这样的动点Q,它在此棱锥的表面(包含底面ABCD)运动,且FQ⊥AC?如果存在,计算其运动轨迹的长度,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市树德中学高二(上)期中数学试卷(理科)(解析版) 题型:解答题

一块边长为10的正方形纸片,按如图所示将阴影部分裁下,然后将余下的四个全等的等腰三角形作为侧面制作一个正四棱锥S-ABCD(底面是正方形,顶点在底面的射影是底面中心的四棱锥).
(1)过此棱锥的高以及一底边中点F作棱锥的截面(如图),设截面三角形面积为y,求y的最大值及y取最大值时的x的值;
(2)空间一动点P满足(a+b+c=1),在第(1)问的条件下,求的最小值,并求取得最小值时a,b,c的值;
(3)在第(1)问的条件下,设F是CD的中点,问是否存在这样的动点Q,它在此棱锥的表面(包含底面ABCD)运动,且FQ⊥AC?如果存在,计算其运动轨迹的长度,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省莆田四中高二(上)辅优周练数学试卷(二)(解析版) 题型:选择题

如图,已知正四棱锥S-ABCD所有棱长都为1,点E是侧棱SC上一动点,过点E垂直于SC的截面将正四棱锥分成上、下两部分.记SE=x(0<x<1),截面下面部分的体积为V(x),则函数y=V(x)的图象大致为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012年江西省高考数学试卷(理科)(解析版) 题型:选择题

如图,已知正四棱锥S-ABCD所有棱长都为1,点E是侧棱SC上一动点,过点E垂直于SC的截面将正四棱锥分成上、下两部分.记SE=x(0<x<1),截面下面部分的体积为V(x),则函数y=V(x)的图象大致为( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案