精英家教网 > 高中数学 > 题目详情
以∅(x)表示标准正态总体在区间(-∞,x)内取值的概率,若随机变量ξ服从正态分布N(μ,σ2),则概率P(|ξ-μ|<σ)=
2Φ(1)-1
2Φ(1)-1
分析:根据ξ服从正态分布N(μ,σ2),先将其转化成标准正态分布,最后利用标准正态分布计算公式即表示出概率P(|ξ-μ|<σ).
解答:解:考查N(μ,σ2)与N(0,1)的关系:
若ξ~N(μ,σ2),
P(x1<x<x2)=Φ(
x2
σ
)-Φ(
x1
σ
)

P(|ξ-μ|<σ)
=P(μ-σ<ξ<μ+σ)
=Φ(
μ+σ-μ
σ
)-Φ(
μ-σ-μ
σ
)

=Φ(1)-Φ(-1)
=Φ(1)-[1-Φ(1)]
=2Φ(1)-1
故答案为:2Φ(1)-1.
点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查绝对值不等式的整理,本题不用运算,是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以Φ(x)表示标准正态总体在区间(-∞,x)内取值的概率,若随机变量ξ服从正态分布N(μ,σ2),则概率P(|ξ-μ|<σ)等于(  )
A、Φ(μ+σ)-Φ(μ-σ)
B、Φ(1)-Φ(-1)
C、Φ(
1-μ
σ
)
D、2Φ(μ+σ)

查看答案和解析>>

科目:高中数学 来源: 题型:

11、以Φ(x)表示标准正态总体在区间(-∞,x)内取值的概率,设随机变量ξ服从标准正态分布N(0,1),已知Φ(-1.96)=0.026,则P(|ξ|<1.96)=
0.948

查看答案和解析>>

科目:高中数学 来源:安徽 题型:单选题

以Φ(x)表示标准正态总体在区间(-∞,x)内取值的概率,若随机变量ξ服从正态分布N(μ,σ2),则概率P(|ξ-μ|<σ)等于(  )
A.Φ(μ+σ)-Φ(μ-σ)B.Φ(1)-Φ(-1)C.Φ(
1-μ
σ
)
D.2Φ(μ+σ)

查看答案和解析>>

科目:高中数学 来源:2011年高三数学精品复习23:概率与统计(解析版) 题型:选择题

以Φ(x)表示标准正态总体在区间(-∞,x)内取值的概率,若随机变量ξ服从正态分布N(μ,σ2),则概率P(|ξ-μ|<σ)等于( )
A.Φ(μ+σ)-Φ(μ-σ)
B.Φ(1)-Φ(-1)
C.
D.2Φ(μ+σ)

查看答案和解析>>

同步练习册答案