精英家教网 > 高中数学 > 题目详情
7.编写一个程序,求使不等式1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$>10成立的最小自然数n的值.

分析 分析题目中的要求,发现这是一个累加型的问题,用循环语句来实现,累加的初始值为0,累加值每一次增加1/n,退出循环的条件是累加结果>10,把握住以上要点不难得到程序框图,从而写出程序.

解答 解:S=0
n=1
WHILE S<=10
  S=S+1/n
  n=n+1
WEND
PRINT n-1
END

点评 可利用循环语句来实现数值的累加(乘)常分如下步骤:①观察S的表达式分析,循环的初值、终值、步长②观察每次累加的值的通项公式③在循环前给累加器和循环变量赋初值,累加器的初值为0,累乘器的初值为1,环变量的初值同累加(乘)第一项的相关初值④在循环体中要先计算累加(乘)值,如果累加(乘)值比较简单可以省略此步,累加(乘),给循环变量加步长⑤输出累加(乘)值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,在空间四边形ABCD中,DA⊥平面ABC,∠ABC=90°,AE⊥CD,AF⊥DB.
求证:(1)平面DBC⊥平面DAB;
(2)平面ADC⊥平面AEF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若点P(2,1)为圆(x-1)2+y2=25的弦AB的中点,则直线AB的方程为(  )
A.x+y-3=0B.2x-y-5=0C.2x+y=0D.x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.关于空间直角坐标系,下列叙述正确的是(  )
A.P(x,y,z)中x,y,z的位置可以互换的
B.空间直角坐标系中的点与一个三元有序数组是一种一一对应关系
C.空间直角坐标系中的三条坐标轴把空间分成八个部分
D.某点在不同空间直角坐标系中的坐标位置可以相同

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将函数f(x)=sin(ωx-$\frac{π}{6}$)(ω>0)的图象向左平移$\frac{3}{2}$π个单位后与原来的图象重合,且f(x)≤f(π)恒成立,则ω的值(  )
A.等于$\frac{4}{3}$B.等于$\frac{3}{4}$C.等于$\frac{8}{3}$D.有很多种情况

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的首项a1=1,前n项和Sn,且数列{$\frac{{S}_{n}}{n}$}是公差为2的等差数列.
(1)求数列{an}的通项公式;
(2)若bn=(-1)nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线y2=4x截直线y=x+b所得弦长为4,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知平面内点P(x,y)满足$\left\{\begin{array}{l}{2x+3y≤12}\\{2x+y≥4}\\{y≥0}\end{array}\right.$,O为坐标原点,则目标函数z=$\frac{2y+6}{3x+9}$的取值范围为[$\frac{2}{9}$,$\frac{14}{9}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z=3+$\frac{3-4i}{4+3i}$,则$\overline z$=(  )
A.3-iB.2-3iC.3+iD.2+3i

查看答案和解析>>

同步练习册答案