【题目】在正方体
中,异面直线
和
分别在上底面
和下底面
上运动,且
,现有以下结论:
①当
与
所成角为60°时,
与
所成角为60°;
②当
与
所成角为60°时,
与侧面
所成角为30°;
③
与
所成角的最小值为45°
④
与
所成角的最大值为90°
其中正确的是( )
A.①③B.②④C.①③④D.②③④
【答案】C
【解析】
根据异面直线夹角,线面夹角的性质,依次判断每个选项:根据题意得到
或
,计算夹角得到①正确,
与侧面
所成角为
,②错误,当
或
时,
与
所成角的最小值为45°,③正确,当
或
时,
与
所成角的最大值为90°,④正确,得到答案.
如图所示:易知
为等边三角形,故
和
所成角为
,故
或
,
易知
,故
或
,易知
为等边三角形,故
与
所成角为60°,即
与
所成角为60°,①正确;
易知
为等边三角形,故
与
所成角为60°,故
或
,此时
或
,易知
与平面
的夹角为
,故
与侧面
所成角为
,②错误;
与平面
的夹角为
,故当
或
时,
与
所成角的最小值为45°,③正确;
易知
平面
,![]()
平面
,故
,当
或
时,
,故
与
所成角的最大值为90°,④正确.
故选:C.
![]()
科目:高中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,AD=2,E是CD的中点,现以AE为折痕将△DAE向上折起,D变为D',使得平面D'AE⊥平面ABCE.
![]()
(1)求证:平面ABD'⊥平面BD'E;
(2)求直线CE与平面BCD'所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[90,100),[100,110),…,[140,150)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
求分数在[120,130)内的频率,并补全这个频
率分布直方图;
统计方法中,同一组数据常用该组区间的中点
值作为代表,据此估计本次考试的平均分;
(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2个,求至多有1人在分数段[120,130)内的概率.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了增强学生的记忆力和辨识力,组织了一场类似《最强大脑》的PK赛,
两队各由4名选手组成,每局两队各派一名选手PK,比赛四局.除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分.假设每局比赛A队选手获胜的概率均为
,且各局比赛结果相互独立,比赛结束时A队的得分高于B队的得分的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥
中,
平面
,四边形
是矩形,且
,
,
是线段
上的动点,
是线段
的中点.
![]()
(1)求证:
平面
;
(2)若直线
与平面
所成角为
,
①求线段
的长;
②求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,已知直线
的参数方程为
(
为参数),以坐标原点为极点,以
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,直线
与曲线
交于
两点.
(1)求直线
l的普通方程和曲线
的直角坐标方程;
(2)已知点
的极坐标为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“三分损益法”是古代中国发明制定音律时所用的方法,其基本原理是:以一根确定长度的琴弦为基准,取此琴强长度的
得到第二根琴弦,第二根琴弦长度的
为第三根琴弦,第三根琴弦长度的
为第四根琴弦.第四根琴弦长度的
为第五根琴弦.琴弦越短,发出的声音音调越高,这五根琴弦发出的声音按音调由低到高分别称为“官、商、角(jué)、微(zhǐ)、羽”,则“角"和“徵”对应的琴弦长度之比为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·石家庄一模)祖暅是南北朝时期的伟大数学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体,图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为( )
![]()
A. ①② B. ①③
C. ②④ D. ①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.
![]()
①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分;
②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间
内;
③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;
④乙同学连续九次测验成绩每一次均有明显进步.
其中正确的个数为( )
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com