精英家教网 > 高中数学 > 题目详情
(2006•石景山区一模)已知x,y满足约束条件
x≥0
y≥0
x+y≥1
,则(x+2)2+y2的最小值为
5
5
分析:先根据约束条件画出可行域,再利用几何意义求最值,(x+2)2+y2表示(-2,0)到可行域的距离的平方,只需求出(-2,0)到可行域的距离的最小值即可
解答:解:根据约束条件画出可行域
z=(x+2)2+y2表示(-2,0)到可行域的距离的平方,
当点B(0,1)时,距离最小,
即最小距离为
(2+0)2+12
=
5

则(x+2)2+y2的最小值是 5.
故答案为:5.
点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.巧妙识别目标函数的几何意义是研究规划问题的基础,纵观目标函数包括线性的与非线性,非线性问题的介入是线性规划问题的拓展与延伸,使得规划问题得以深化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•石景山区一模)设复数z1=1+i,z2=2-3i,则z1•z2等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•石景山区一模)把一组数据中的每一个数据都减去80,得一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•石景山区一模)在△ABC中,a、b、c分别是角A、B、C所对的边,∠A=60°,b=1,△ABC的面积S△ABC=
3
,则
a+b+c
sinA+sinB+sinC
的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•石景山区一模)等差数列{an}的前n项和为Sn,且S2=10,S4=36,则过点P(n,an)和Q(n+2,an+2)(n∈N*)的直线的一个方向向量的坐标可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•石景山区一模)在(x3+
2x2
)5
的展开式中,x5的系数是
40
40
;各项系数的和是
243
243
.(用数字作答)

查看答案和解析>>

同步练习册答案