精英家教网 > 高中数学 > 题目详情
对n∈N*,定义函数fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求证:y=fn(x)图象的右端点与y=fn+1(x)图象的左端点重合;并回答这些端点在哪条直线上.
(2)若直线y=knx与函数fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的图象有且仅有一个公共点,试将kn表示成n的函数.
(3)对n∈N*,n≥2,在区间[0,n]上定义函数y=f(x),使得当m-1≤x≤m(n∈N*,且m=1,2,…,n)时,f(x)=fm(x).试研究关于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的实数解的个数(这里的kn是(2)中的kn),并证明你的结论.
【答案】分析:(1)由fn(n)=n 得 y=fn(x)图象右端点的坐标为(n,n),由fn+1(n)=n得 y=fn+1(x)图象左端点的坐标为(n,n),故两端点重合,且这些点在直线y=x上.
(2)由题设及(1)的结论方程-(x-n)2+n=kn•x可得 1<kn<2,且kn单调递减.在n-1≤x≤n上有两个相等的实数根.求出方程的两个根,求得 kn=2n-2
(n≥2,n∈N*).
(3)当n≥2时,求得 kn=,可得 1<kn<2,且kn单调递减.分①当n≥3时,和②当n=2时两种情况,分别求得方程 f(x)=kn•x( 0≤x≤n,n∈N*)的实数解的
个数为2n-1,从而证得结论.
解答:(1)证明:由fn(n)=n 得 y=fn(x)图象右端点的坐标为(n,n),
由fn+1(n)=n得 y=fn+1(x)图象左端点的坐标为(n,n),故两端点重合.  (2分)
并且对 n∈N*,这些点在直线y=x上.(4分)
(2)由题设及(1)的结论,两个函数图象有且仅有一个公共点,即方程-(x-n)2+n=kn•x在 满足n-1≤x≤n的区间上有两个相等的实数根.
整理方程得 x2+(kn-2n)x+n2-n=0,
由△=-4(n2-n)=0,解得 kn=2n±2,(8分)
此时方程的两个实数根x1,x2相等,由 x1+x2=2n-kn
得 x1=x2==[2n±2]=m
因为 n-1≤x1=x2≤n,所以只能 kn=2n-2,(n≥2,n∈N*).(10分)
(3)当n≥2时,求得 kn=2n-2==
可得 1<kn<2,且kn单调递减.                                                      (14分)
①当n≥3时,对于2≤i≤n-1,总有1<kn<ki,亦即直线y=knx与函数fi(x)的图象总有两个不同的公共点(直线y=knx在直线y=x与直线y=ki x之间).
对于函数fi(x)来说,因为 1<kn<2,所以方程 kn•x=fi(x)有两个解:x1=0,x2=2-kn∈(0,1).
此时方程f(x)=kn•x( 0≤x≤n,n∈N*)的实数解的个数为2(n-1)+1=2n-1.(16分)
②当n=2时,因为1<k2<2,所以方程 k2x=fi(x)有两个解.此时方程f(x)=k2x.
(0≤x≤2)的实数解的个数为3.    (17分)
综上,当n≥2,n∈N*时,方程 f(x)=kn•x( 0≤x≤n,n∈N*)的实数解的个数为2n-1.  (18分)
点评:本题主要考查函数的零点与方程的根的关系,二次函数的性质,体现了化归与转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•黄浦区二模)对n∈N*,定义函数fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求证:y=fn(x)图象的右端点与y=fn+1(x)图象的左端点重合;并回答这些端点在哪条直线上.
(2)若直线y=knx与函数fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的图象有且仅有一个公共点,试将kn表示成n的函数.
(3)对n∈N*,n≥2,在区间[0,n]上定义函数y=f(x),使得当m-1≤x≤m(n∈N*,且m=1,2,…,n)时,f(x)=fm(x).试研究关于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的实数解的个数(这里的kn是(2)中的kn),并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对n∈N*,定义函数fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求证:y=fn(x)图象的右端点与y=fn+1(x)图象的左端点重合;并回答这些端点在哪条直线上.
(2)若直线y=knx与函数fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的图象有且仅有一个公共点,试将kn表示成n的函数.
(3)对n∈N*,n≥2,在区间[0,n]上定义函数y=f(x),使得当m-1≤x≤m(n∈N*,且m=1,2,…,n)时,f(x)=fm(x).试研究关于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的实数解的个数(这里的kn是(2)中的kn),并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省郑州市高一(上)期末数学试卷(解析版) 题型:选择题

定义在R上的函数f(x)满足:f(x)的图象关于y轴对称,并且对任意的x1,x2∈(-∞,0](x1≠x2)有(x1-x2)(f(x1)-f(x2))>0.则当n∈N时,有( )
A.f(n+1)<f(-n)<f(n-1)
B.f(n-1)<f(-n)<f(n+1)
C.f(-n)<f(n-1)<f(n+1)
D.f(n+1)<f(n-1)<f(-n)

查看答案和解析>>

科目:高中数学 来源:2012-2013学江苏省无锡市青阳高级中学高三(上)月考数学试卷(一)(解析版) 题型:解答题

对n∈N*,定义函数fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求证:y=fn(x)图象的右端点与y=fn+1(x)图象的左端点重合;并回答这些端点在哪条直线上.
(2)若直线y=knx与函数fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的图象有且仅有一个公共点,试将kn表示成n的函数.
(3)对n∈N*,n≥2,在区间[0,n]上定义函数y=f(x),使得当m-1≤x≤m(n∈N*,且m=1,2,…,n)时,f(x)=fm(x).试研究关于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的实数解的个数(这里的kn是(2)中的kn),并证明你的结论.

查看答案和解析>>

同步练习册答案