精英家教网 > 高中数学 > 题目详情

设函数f(x)=,其中,则导数f’(1)的取

 

值范围是(    )

A. [-2, 2]   B[]    C. [,2]    D[,2]

 

【答案】

D

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
1
x+b
(a,b为常数),且方程f(x)=
3
2
x
有两个实根为x1=-1,x2=2,
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a
b
-
3
2
a
=(3sin(ωx+φ),
3
sin(ωx+φ)),
b
=(sin(ωx+φ),cos(ωx+φ))
其周期为π,且x=
π
12
是它的一条对称轴.
(1)求f(x)的解析式;
(2)当x∈[0,
π
4
]
时,不等式f(x)+a>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx-
1
2
ax2-bx

(1)当a=b=
1
2
时,求f(x)的最大值.
(2)令F(x)=f(x)+
1
2
ax2+bx+
a
x
(0<x≤3)
,以其图象上任一点P(x0,y0)为切点的切线的斜率k≤
1
2
恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武昌区模拟)设函数f(x)=px-
q
x
-2lnx
,且f(e)=qe-
p
e
-2
,其中p≥0,e是自然对数的底数.
(1)求p与q的关系;
(2)若f(x)在其定义域内为单调函数,求p的取值范围.
(3)设g(x)=
2e
x
.若存在x0∈[1,e],使得f(x0)>g(x0)成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源:江西省八所重点中学2011届高三联合考试数学理科试题 题型:013

设函数f(x)在其定义域(0,+∞)上的取值恒不为0,且x>0,y∈R时,恒有f(xy)=yf(x).若a>b>c>1且a、b、c成等差数列,则f(a)f(c)与[f(b)]2的大小关系为

[  ]
A.

B.

C.

D.

不确定

查看答案和解析>>

同步练习册答案