精英家教网 > 高中数学 > 题目详情
(2001•上海)对任意一个非零复数z,定义集合Mz={w|w=z2n-1,n∈N}
(Ⅰ)设α是方程x+
1
x
=
2
的一个根.试用列举法表示集合Ma,若在Ma中任取两个数,求其和为零的概率P;
(Ⅱ)设复数ω∈Mz,求证:Mω⊆Mz
分析:(Ⅰ)由α是方程x2-
2
x+1=0
的根,可得α1=
2
2
(1+i)或α2=
2
2
(1-i)
.当α1=
2
2
(1+i)
时,由
α
2
1
=i, 
α
2n-1
1
=
(
α
2
1
)
n
α1
=
in
α1
,可得Mα1={
2
2
(1+i),-
2
2
(1-i),-
2
2
(1+i),
2
2
(1-i)}
. 当α2=
2
2
(1-i)
时,同理求得Mα2={
-i
α2
-1
α2
i
α2
1
α2
}=Mα1
.由此求得在Ma中任取两个数,求其和为零的概率.
(Ⅱ)由ω∈Mz,可得存在m∈N,使得ω=z2m-1.于是对任意n∈N,ω2n-1=z(2m-1)(2n-1),由于(2m-1)(2n-1)是正奇数,ω2n-1∈Mz,命题得证.
解答:解:(Ⅰ)∵α是方程x2-
2
x+1=0
的根,∴α1=
2
2
(1+i)或α2=
2
2
(1-i)
.…(2分)
α1=
2
2
(1+i)
时,∵
α
2
1
=i, 
α
2n-1
1
=
(
α
2
1
)
n
α1
=
in
α1

Mα1={
i
α1
-1
α1
-i
α1
1
α1
}
={
2
2
(1+i),-
2
2
(1-i),-
2
2
(1+i),
2
2
(1-i)}

α2=
2
2
(1-i)
时,∵
α
2
2
=-i

Mα2={
-i
α2
-1
α2
i
α2
1
α2
}=Mα1
={
2
2
(1+i),-
2
2
(1-i),-
2
2
(1+i),
2
2
(1-i)}

α2=
2
2
(1-i)
时,∵
α
2
2
=-i
,∴Mα2={
-i
α2
-1
α2
i
α2
1
α2
}=Mα1

因此,不论α取哪一个值,集合Mα是不变的,即Mα={
2
2
(1+i),-
2
2
(1-i),-
2
2
(1+i),
2
2
(1-i)}
.…(8分)
于是,在Ma中任取两个数,求其和为零的概率 P=
2
C
2
4
=
1
3
.…(10分)
(Ⅱ)证明:∵ω∈Mz,∴存在m∈N,使得ω=z2m-1.…(12分)
于是对任意n∈N,ω2n-1=z(2m-1)(2n-1),由于(2m-1)(2n-1)是正奇数,ω2n-1∈Mz,所以Mω⊆Mz.…(14分)
点评:本题主要考查两个复数代数形式的混合运算,等可能事件的概率求法,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2001•上海)对任意一人非零复数z,定义集合Mz={w|w=zn,n∈N}
(1)设z是方程x+
1x
=0
的一个根.试用列举法表示集合Mz,若在Mz中任取两个数,求其和为零的概率P;
(2)若集合Mz中只有3个元素,试写出满足条件的一个z值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2001•上海)对任意函数f(x),x∈D,可按图示构造一个数列发生器,其工作原理如下:
①输入数据x0∈D,经按列发生器,其工作原理如图:
②若x1∈D,则数列发生器结束工作;若x1∈D,则将x1反馈回输入端,再输出x2=f(x1),并依此规律继续下去,现定义f(x)=
4x-2
x+1

(Ⅰ)若输入x0=
49
65
,则由数列发生器产生数列{xn}.请写出数列{xn}的所有项:
(Ⅱ)若要数列发生器产生一个无穷的常数数列,试求输入的初始数据x0的值;
(Ⅲ)若输入x0时,产生的无穷数列{xn}满足;对任意正整数n,均有xn>xn+1,求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:044

(2001,上海)对任意函数f(x)xD,可按如图所示,构造一个数列发生器,其工作原理如下:①输入数据,经数列发生器输出;②若,则数列发生器结束工作;若,将反馈回输入端,再输出,并依此规律进行下去.现定义

(1)若输入,则由数列发生器产生数列,写出数列的所有项;

(2)若要数列发生器产生一个无穷的常数列,试求输入的初始数据的值.

查看答案和解析>>

同步练习册答案