精英家教网 > 高中数学 > 题目详情
如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF所截面得,已知FA⊥平面ABC,AB=2,BD=1,AF=2, CE=3,O为AB的中点.

(1)求证:OC⊥DF;
(2)求平面DEF与平面ABC相交所成锐二面角的大小;
(3)求多面体ABC—FDE的体积V.
(1)以O为原点,OB、OC、Oz分别为x轴、y轴、z轴建立空间直角坐标系,
 
(2)平面DEF与平面ABC相交所成锐二面角的大小为      
(3)

试题分析:(1)证法一:FA⊥平面ABC,平面ABC,     2分
又CA=CB且O为AB的中点, 平面ABDF,          4分
平面ABDF,        5分
证法二:如图,以O为原点,OB、OC、Oz分别为x轴、y轴、z轴建立空间直角坐标系,                2分
      5分
(2)解法一:解:设平面ABC的法向量为            6分

设平面DEF的法向量为 

解得,           8分
所以,          10分
故平面DEF与平面ABC相交所成锐二面角的大小为            11分
解法二:设平面DEF与平面ABC相交所成锐二面角的大小为,依题中的条件可求得DE=由空间射影定理得故平面DEF与平面ABC相交所成锐二面角的大小为             11分
解法三:延长ED、FD交直线CB、AB于M、N两点,过B点作MN的垂线交MN于Q点,连结DQ,
平面BMN,所以为二面角的平面角,
,故平面DEF与平面ABC相交所成锐二面角的大小为      11分
(3)解法一:由(1)知平面ABDF,且平面ABC,
 
         14分
所以多面体ABC—FDE的体积为解法二:在原来的几何体再补一个相同的几何体得到一个直三棱柱,其底面为ABC,高为4,
所以多面体ABC—FDE的体积所以多面体ABC—FDE的体积为
点评:中档题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用空间向量,省去繁琐的证明,也是解决立体几何问题的一个基本思路。对计算能力要求较高。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,平面⊥平面,四边形是直角梯形,分别为的中点.

(Ⅰ) 用几何法证明:平面
(Ⅱ)用几何法证明:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱(侧棱垂直底面)中,M、N分别是BC、AC1中点,AA1=2,AB=,AC=AM=1.

(1)证明:MN∥平面A1ABB1
(2)求几何体C—MNA的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体中,分别是棱的中点,则异面直线所成的角等于__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在棱长为2的正方体中,点E,F分别是棱AB,BC的中点,则点到平面的距离等于( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P—ABCD中,底面ABCD是边长为的正方形E, F分别为PC,BD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.

(Ⅰ)求证:EF//平面PAD;
(Ⅱ)求三棱锥C—PBD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知为平行四边形,,点上,相交于.现将四边形沿折起,使点在平面上的射影恰在直线上.

(Ⅰ) 求证:平面
(Ⅱ) 求折后直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是空间中互不相同的直线,是不重合的两平面,则下列命题中为真命题的是(    )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是均以为斜边的等腰直角三角形,分别为的中点,的中点,且平面.

(1)证明:平面
(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案