精英家教网 > 高中数学 > 题目详情
已知为平面内的两个定点,动点P满足|PF1|+|PF2|=4,记点P的轨迹为曲线г.
(Ⅰ)求曲线г的方程;
(Ⅱ)判断原点O关于直线x+y-1=0的对称点R是否在曲线г包围的范围内?说明理由.
(说明:点在曲线г包围的范围内是指点在曲线г上或点在曲线г包围的封闭图形的内部.)
(Ⅲ)设Q是曲线г上的一点,过点Q的直线l 交 x 轴于点F(-1,0),交 y 轴于点M,若,求直线l 的斜率.
【答案】分析:(I)由题意利用椭圆的定义即可得出;
(II)解法一:利用轴对称(垂直平分)的知识可求出:原点O关于直线x+y-1=0的对称点为R(m,n),再判断是否成立即可.
解法二:同解法一求出点R(m,n),进而得到直线OR的方程,与椭圆方程联立即可得出交点G,H.判断点R是否在在线段GH上即可.
(III)由已知可得直线l的方程,可得点M的坐标,由Q,F,M三点共线,及,即可得出点Q的坐标,代入椭圆方程即可得到直线l的斜率.
解答:解:(Ⅰ)由题意可知,点P到两定点的距离之和为定值4,
所以点P的轨迹是以为焦点的椭圆.
,所以
故所求方程为
(Ⅱ)解法一:设原点O关于直线x+y-1=0的对称点为R(m,n),
由点关于直线的对称点的性质得:,解得即R(1,1).
此时,∴R在曲线г包围的范围内.
解法二:设原点O关于直线x+y-1=0的对称点为R(m,n),
由点关于直线的对称点的性质得:,解得即R(1,1),
∴直线OR的方程:y=x
设直线OR交椭圆于G和H,
得:
显然点R在线段GH上.∴点R在曲线г包围的范围内.
(Ⅲ)由题意知直线l 的斜率存在,设直线l 的斜率为k,直线l 的方程为y=k(x+1).
则有M(0,k),设Q(x1,y1),由于Q,F,M三点共线,且
根据题意,得(x1,y1-k)=±2(x1+1,y1),解得
又点Q在椭圆上,所以
解得k=0,k=±4.
综上,直线l 的斜率为k=0,k=±4.
点评:本题综合考查了椭圆的标准方程及其性质、轴对称性质、点与椭圆的位置关系、向量关系等基础知识与基本技能,考查了分析问题和解决问题的能力、推理能力和计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•福建模拟)已知F1(-1,0),F2(1,0)为平面内的两个定点,动点P满足|PF1|+|PF2|=2
2
,记点P的轨迹为曲线Γ.
(Ⅰ)求曲线Γ的方程;
(Ⅱ)设点O为坐标原点,点A,B,C是曲线Γ上的不同三点,且
OA
+
OB
+
OC
=
0

(ⅰ)试探究:直线AB与OC的斜率之积是否为定值?证明你的结论;
(ⅱ)当直线AB过点F1时,求直线AB、OC与x轴所围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕尾二模)已知F1(-
2
,0),F2(
2
,0)
为平面内的两个定点,动点P满足|PF1|+|PF2|=4,记点P的轨迹为曲线Γ.
(Ⅰ)求曲线Γ的方程;
(Ⅱ)判断原点O关于直线x+y-1=0的对称点R是否在曲线Γ包围的范围内?说明理由.
(注:点在曲线Γ包围的范围内是指点在曲线Γ上或点在曲线Γ包围的封闭图形的内部)
(Ⅲ)设点O为坐标原点,点A,B,C是曲线Γ上的不同三点,且
OA
+
OB
+
OC
=
0
.试探究:直线AB与OC的斜率之积是否为定值?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知F1(-1,0),F2(1,0)为平面内的两个定点,动点P满足数学公式,记点P的轨迹为曲线Γ.
(Ⅰ)求曲线Γ的方程;
(Ⅱ)设点O为坐标原点,点A,B,C是曲线Γ上的不同三点,且数学公式
(ⅰ)试探究:直线AB与OC的斜率之积是否为定值?证明你的结论;
(ⅱ)当直线AB过点F1时,求直线AB、OC与x轴所围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源:2013年广东省汕尾市高考数学二模试卷(理科)(解析版) 题型:解答题

已知为平面内的两个定点,动点P满足|PF1|+|PF2|=4,记点P的轨迹为曲线Γ.
(Ⅰ)求曲线Γ的方程;
(Ⅱ)判断原点O关于直线x+y-1=0的对称点R是否在曲线Γ包围的范围内?说明理由.
(注:点在曲线Γ包围的范围内是指点在曲线Γ上或点在曲线Γ包围的封闭图形的内部)
(Ⅲ)设点O为坐标原点,点A,B,C是曲线Γ上的不同三点,且.试探究:直线AB与OC的斜率之积是否为定值?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三(下)4月质量检查数学试卷(理科)(解析版) 题型:解答题

已知F1(-1,0),F2(1,0)为平面内的两个定点,动点P满足,记点P的轨迹为曲线Γ.
(Ⅰ)求曲线Γ的方程;
(Ⅱ)设点O为坐标原点,点A,B,C是曲线Γ上的不同三点,且
(ⅰ)试探究:直线AB与OC的斜率之积是否为定值?证明你的结论;
(ⅱ)当直线AB过点F1时,求直线AB、OC与x轴所围成的三角形的面积.

查看答案和解析>>

同步练习册答案