精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的函数y=f(x)对任意x都满足f(x+1)=﹣f(x),且当0≤x<1时,f(x)=x,则函数g(x)=f(x)﹣ln|x|的零点个数为个.

【答案】3
【解析】解:根据题意,函数g(x)=f(x)﹣ln|x|的零点个数即函数y=f(x)的图象与函数y=ln|x|的图象交点的个数;
对于f(x)有f(x+1)=﹣f(x),
设﹣1≤x<0,则0≤x+1<1,此时有f(x)=﹣f(x+1)=﹣(x+1),
又由f(x+1)=﹣f(x),则f(x+2)=﹣f(x+1)=f(x),
即函数f(x)的周期为2;
在同一坐标系中做出y=f(x)的图象与y=ln|x|的图象,可得其有三个交点,
即函数g(x)=f(x)﹣ln|x|有3个零点;
所以答案是:3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=kax(k为常数,a>0且a≠1)的图象过点A(0,1)和点B(2,16).
(1)求函数的解析式;
(2)g(x)=b+ 是奇函数,求常数b的值;
(3)对任意的x1 , x2∈R且x1≠x2 , 试比较 的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列等式:
1﹣ =
1﹣ + = +
1﹣ + + = + +

据此规律,第n个等式可为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】化简求值
(1)计算: ﹣( 0+0.2 ×( 4
(2)已知x +x =3,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)求函数f(x)的零点;
(2)若实数t满足f(log2t)+f(log2 )<2f(2),求f(t)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x||x﹣a|<4},B={x|x2﹣4x﹣5>0}.
(1)若a=1,求A∩B;
(2)若A∪B=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答
(1)集合M={1,2,(m2﹣3m﹣1)+(m2﹣5m﹣6)i},N={3,﹣1},M∩N={3},求实数m的值.
(2)已知12= ×1×2×3,12+22= ×2×3×5,12+22+32= ×3×4×7,12+22+32+42= ×4×5×9,由此猜想12+22+…+n2(n∈N*)的表达式并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 = .

(Ⅰ)求函数的单调区间;

(Ⅱ)若函数有两个零点.

(1)求满足条件的最小正整数的值;

(2)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为定义在R上的奇函数,且当x>0时,f(x)=1﹣x2
(1)求函数f(x)的解析式;
(2)作出函数f(x)的图象.
(3)若函数f(x)在区间[a,a+1]上单调,直接写出实数a的取值范围.(不必写出演算过程)

查看答案和解析>>

同步练习册答案