精英家教网 > 高中数学 > 题目详情
数列{an}的前n项和为Sn(n∈N*),点(an,Sn)在直线y=2x-3n上.
(1)若数列{an+c}成等比数列,求常数c的值;
(2)求数列{an}的通项公式; 
(3)数列{an}中,是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.
分析:(1)由点(an,Sn)在直线y=2x-3n上,得Sn=2an-3n①,则Sn+1=2an+1-3(n+1)②,两式相减可得数列递推式,可推得
an+1+3
an+3
=2
,从而可得c值;
(2)易求a1,由(1)可求得an+3,从而可得an
(3)设存在s,p,r∈N*,且s<p<r使as,ap,ar成等差数列,由中项公式可得等式,根据条件说明该等式不成立即可;
解答:解:(1)∵点(an,Sn)在直线y=2x-3n上.
∴Sn=2an-3n①,
则Sn+1=2an+1-3(n+1)②,
②-①得an+1=2an+3,
an+1+3
an+3
=2
,∴{an+3)为等比数列,则c=3.      
(2)∵a1=S1=2a1-3,∴a1=3.
由(1)知an+3=(a1+3)•2n-1,∴an=3•2n-3,n∈N*
(3)设存在s,p,r∈N*,且s<p<r使as,ap,ar成等差数列,
则2ap=as+ar,即2(3•2p-3)=(3•2s-3)+(3•2r-3).
∴2p+1=2s+2r,即2p-s+1=1+2r-s(*).
∵s、p、r∈N*,且s<p<r,∴2p-s+1、2r-s均为偶数,
从而(*)式产生矛盾.
∴这样的三项不存在.
点评:本题考查等差数列、等比数列的通项公式,考查由数列递推式求数列通项,考查学生解决问题的能力,存在性问题要先假设存在,然后以此出发推理,如有矛盾,则不存在,否则即存在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等比数列{an}的公比q≠1,Sn表示数列{an}的前n项的和,Tn表示数列{an}的前n项的乘积,Tn(k)表示{an}的前n项中除去第k项后剩余的n-1项的乘积,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),则数列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n项的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}的通项an=
1
pn-q
,实数p,q满足p>q>0且p>1,sn为数列{an}的前n项和.
(1)求证:当n≥2时,pan<an-1
(2)求证sn
p
(p-1)(p-q)
(1-
1
pn
)

(3)若an=
1
(2n-1)(2n+1-1)
,求证sn
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是数列{an}的前n项和,an>0,Sn=
a
2
n
+an
2
,n∈N*
(1)求证:{an}是等差数列;
(2)若数列{bn}满足b1=2,bn+1=2an+bn,求数列{bn}的通项公式bn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘二模)数列{an}的前n项和为Sn,若数列{an}的各项按如下规律排列:
1
2
1
3
2
3
1
4
2
4
3
4
1
5
2
5
3
5
4
5
…,
1
n
2
n
,…,
n-1
n
,…有如下运算和结论:
①a24=
3
8

②数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比数列;
③数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n项和为Tn=
n2+n
4

④若存在正整数k,使Sk<10,Sk+1≥10,则ak=
5
7

其中正确的结论是
①③④
①③④
.(将你认为正确的结论序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若数列{an}的前n项和Sn=2n+1,则数列{an}为等比数列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么满足条件的△ABC有两解;
③设函数f(x)=x|x-a|+b,则函数f(x)为奇函数的充要条件是a2+b2=0;
④设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),则M中的直线所能围成的正三角形面积都相等.
其中真命题的序号是

查看答案和解析>>

同步练习册答案