精英家教网 > 高中数学 > 题目详情

【题目】若一系列函数的解析式和值域相同,但是定义域不同,则称这些函数为“同族函数”,例如函数y=x2 , x∈[1,2],与函数y=x2 , x∈[﹣2,﹣1]即为“同族函数”.下面的函数解析式也能够被用来构造“同族函数”的是(
A.y=x
B.y=|x﹣3|
C.y=2x
D.y=log

【答案】B
【解析】解:y=|x﹣3|,在(3,+∞)上为增函数,在(﹣∞,3)上为减函数,
例如取x∈[1,2]时,1≤f(x)≤2;
取x∈[4,5]时,1≤f(x)≤2;
故能够被用来构造“同族函数”;
y=x,y=2x , y= log 是单调函数,定义域不一样,其值域也不一样,
故不能被用来构造“同族函数”.
故选B;
【考点精析】本题主要考查了函数的定义域及其求法和函数的值域的相关知识点,需要掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零;求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数).

(Ⅰ)若,求曲线处的切线方程;

(Ⅱ)若对任意 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:在四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=3,PA⊥底面ABCD,EPC中点,FAB中点.

(Ⅰ)求证:BE∥平面PDF;

(Ⅱ)求直线PD与平面PFB所成角的正切值;

(Ⅲ)求三棱锥P﹣DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣4x+a+3,a∈R.
(1)若函数y=f(x)的图象与x轴无交点,求a的取值范围;
(2)若函数y=f(x)在[﹣1,1]上存在零点,求a的取值范围;
(3)设函数g(x)=bx+5﹣2b,b∈R.当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知曲线的参数方程为 (为参数),以直角坐标系原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

(Ⅰ)求曲线的普通方程与直线的直角坐标方程;

(Ⅱ)设点为曲线上的动点,求点到直线距离的最大值及其对应的点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线),焦点到准线的距离为,过点作直线交抛物线于点(点在第一象限).

()若点焦点重合,且弦长,求直线的方程;

()若点关于轴的对称点为,直线x轴于点,且,求证:点B的坐标是,并求点到直线的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为,且.

求此抛物线的方程;

过点做直线交抛物线两点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】轮船从某港口将一些物品送到正航行的轮船上,在轮船出发时,轮船位于港口北偏西且与相距20海里的处,并正以30海里的航速沿正东方向匀速行驶,假设轮船沿直线方向以海里/小时的航速匀速行驶,经过小时与轮船相遇.

(1)若使相遇时轮船航距最短,则轮船的航行速度大小应为多少?

(2)假设轮船的最高航速只能达到30海里/小时,则轮船以多大速度及什么航行方向才能在最短时间与轮船相遇,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与圆

(1)若直线与圆相交于两个不同点,求的最小值;

(2)直线上是否存在点,满足经过点有无数对互相垂直的直线,它们分别与圆和圆相交,并且直线被圆所截得的弦长等于直线被圆所截得的弦长?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案