精英家教网 > 高中数学 > 题目详情
设直线l与x轴的交点P,且倾斜角为α,若将其终点P按逆时针方向旋转45°,得到直线l的倾斜角为α+45°,则(    )

A.0°≤α<90°                          B.0°≤α<135°

C.0°<α≤135°                        D.0°<α<135°

D

解析:由于直线l与x轴相交,可知α≠0°.

又α与α+45°都是直线的倾斜角,从而有∴0°<α<135°.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程是ρ=2sinθ,设直线l的参数方程是
x=-
3
5
t+2
y=
4
5
t
(t为参数).
(1)将曲线C的极坐标方程转化为直角坐标方程;
(2)设直线l与x轴的交点是M,N为曲线C上一动点,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A(选修4-1:几何证明选讲)
如图,AB是⊙O的直径,C,F是⊙O上的两点,OC⊥AB,过点F作⊙O的切线FD交AB的延长线于点D,连接CF交AB于点E.
求证:DE2=DB•DA.
B(选修4-2:矩阵与变换)
求矩阵
21
12
的特征值及对应的特征向量.
C(选修4-4:坐标系与参数方程)
已知曲线C的极坐标方程是ρ=2sinθ,直线l的参数方程是
x=-
3
5
t+2
y=
4
5
t
(t为参数).
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)设直线l与x轴的交点是M,N是曲线C上一动点,求MN的最大值.
D(选修4-5:不等式选讲)
已知m>0,a,b∈R,求证:(
a+mb
1+m
)2
a2+mb2
1+m

查看答案和解析>>

科目:高中数学 来源: 题型:

《坐标系与参数方程》选做题:
已知曲线C的极坐标方程是p=2sinθ,直线l的参数方程是
x=-
3
5
t
y=
4
5
t
(t为参数).设直线l与x轴的交点是M,N是曲线C上一动点,则|MN|的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,等腰梯形OABC,底角为45°,各顶点的坐标分别为O(0,0),A(6,0),B(4,2),C(2,2).一条与y轴平行的动直线l从O点开始做平行移动,到A点为止.设直线l与x轴的交点M,记OM=x,记梯形被直线l截得的在l左侧的图形面积为y.
(1)函数y=f(x)的解析式;
(2)求函数的定义域、值域;
(3)计算[f(
72
)]的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)(选修4-4坐标系与参数方程)已知曲线C的极坐标方程是ρ=2sinθ,直线l的参数方程是
x=-
3
5
t+2
y=
4
5
t
(t为参数).设直线l与x轴的交点是M,N是曲线C上一动点,则|MN|的最大值为
5
+1
5
+1

(2)(选修4-5不等式选讲)设函数f(x)=|x-1|+|x-2|,若不等式|a+b|+|a-b|≥|a|f(x),(a≠0,a,b∈R)恒成立,则实数x的取值范围是
1
2
≤x≤
5
2
1
2
≤x≤
5
2

查看答案和解析>>

同步练习册答案