精英家教网 > 高中数学 > 题目详情
(1)(选修4-4坐标系与参数方程)已知曲线C的极坐标方程是ρ=2sinθ,直线l的参数方程是
x=-
3
5
t+2
y=
4
5
t
(t为参数).设直线l与x轴的交点是M,N是曲线C上一动点,则|MN|的最大值为
5
+1
5
+1

(2)(选修4-5不等式选讲)设函数f(x)=|x-1|+|x-2|,若不等式|a+b|+|a-b|≥|a|f(x),(a≠0,a,b∈R)恒成立,则实数x的取值范围是
1
2
≤x≤
5
2
1
2
≤x≤
5
2
分析:(1)首先将曲线C化成普通方程,得出它是以P(0,1)为圆心半径为1的圆,然后将直线L化成普通方程,得出它与x轴的交点M的坐标,最后用两个点之间的距离公式得出PM的距离,从而得出曲C上一动点N到M的最大距离.
(2)先分离出含有a,b的式子,即
1
|a|
(|a+b|+|a-b|)≥f(x)恒成立,问题转化为求左式的最小值即可.
解答:解:(1)∵曲线C的极坐标方程ρ=2sinθ,化成普通方程:
x2+y2-2y=0,即x2+(y-1)2=1
∴曲线C表示以点P(0,1)为圆心,半径为1的圆
∵直L的参数方程是:
x=-
3
5
t+2
y=
4
5
t

∴直L的普通方程是:4x+3y-8=0
∴可得L与x轴的交点M坐标为(2,0)
PM=
(2-0) 2+(0-1) 2
=
5

由此可得曲C上一动点N到M的最大距离等于
5
+1

故答案为:
5
+1


(2)化简得:f(x)=
2x-3(x≥2)
1(1<x<2)
3-2x(x≤1)

其图象如图所示,
由|a+b|+|a-b|≥|a|f(x)
|a+b|+|a-b|
|a|
≥f(x)

又因为
|a+b|+|a-b|
|a|
|a+b+a-b|
|a|
=2

则有2≥f(x)
结合图象解不等式:2≥|x-1|+|x-2|
1
2
≤x≤
5
2

故答案为:
1
2
≤x≤
5
2
点评:(1)本题考查了简单的曲线的极坐标方程和参数方程化为普通方程、以及圆上动点到圆外一个定点的距离最值的知识点.(2)本题主要考查了不等式的恒成立问题,通常采用分离参数的方法解决,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•葫芦岛模拟)选修4-4:坐标系与参数方程.
在平面直角坐标系中,曲线C1的参数方程为
x=acos?
y=bsin?
(a>b>0,?为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M(2,
3
)对应的参数φ=
π
3
;θ=
π
4
;与曲线C2交于点D(
2
π
4

(1)求曲线C1,C2的方程;
(2)A(ρ1,θ),Β(ρ2,θ+
π
2
)是曲线C1上的两点,求
1
ρ
2
1
+
1
ρ
2
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选做题)本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.
A.[选修4-1:几何证明选讲]
已知△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与点A,C重合),延长BD至点E.
求证:AD的延长线平分∠CDE
B.[选修4-2:矩阵与变换]
已知矩阵A=
12
-14

(1)求A的逆矩阵A-1
(2)求A的特征值和特征向量.
C.[选修4-4:坐标系与参数方程]
已知曲线C的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为
x=
1
2
t
y=
3
2
t+1
(t为参数),求直线l被曲线C截得的线段长度.
D.[选修4-5,不等式选讲](本小题满分10分)
设a,b,c均为正实数,求证:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中数学 来源: 题型:

附加题:(选做题:在下面A、B、C、D四个小题中只能选做两题)
A.选修4-1:几何证明选讲
如图,已知AB、CD是圆O的两条弦,且AB是线段CD的垂直平分线,
已知AB=6,CD=2
5
,求线段AC的长度.
B.选修4-2:矩阵与变换
已知二阶矩阵A有特征值λ1=1及对应的一个特征向量e1=
1
1
和特征值λ2=2及对应的一个特征向量e2=
1
0
,试求矩阵A.
C.选修4-4:坐标系与参数方程
在直角坐标系xOy中,已知曲线C的参数方程是
y=sinθ+1
x=cosθ
(θ是参数),若以O为极点,x轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C的极坐标方程.
D.选修4-5:不等式选讲
已知关于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)当a=1时,求此不等式的解集;
(2)若此不等式的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4~4:坐标系与参数方程
在直角坐标系xOy中,直线l的参数方程为
x=1+tcosα
y=2+tsinα
(t为参数)在极坐标系(与直角坐标系xOy取相同的长度单位.且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=6sinθ.
(I)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线l交于点A,B.若点P的坐标为(1,2),求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-4:坐标系与参数方程)  
在极坐标系中,已知圆ρ=asinθ(a>0)与直线ρcos(θ+
π4
)=1相切,求实数a的值.

查看答案和解析>>

同步练习册答案