精英家教网 > 高中数学 > 题目详情

(本小题12分)
如图,抛物线的焦点到准线的距离与椭圆的长半轴相等,设椭圆的右顶点为在第一象限的交点为为坐标原点,且的面积为

(1)求椭圆的标准方程;
(2)过点作直线两点,射线分别交两点.
(I)求证:点在以为直径的圆的内部;
(II)记的面积分别为,问是否存在直线,使得?请说明理由.

(1)
(2) (I)见解析;(II) 不存在直线使得

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,椭圆的左焦点为,右焦点为,离心率.过的直线交椭圆于两点,且△的周长为

(Ⅰ)求椭圆的方程.
(Ⅱ)设动直线与椭圆有且只有一个公共点,且与直线相交于点.试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知直线上有一个动点,过点作直线垂直于轴,动点上,且满足
(为坐标原点),记点的轨迹为.
(1)求曲线的方程;
(2)若直线是曲线的一条切线, 当点到直线的距离最短时,求直线的方程. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线C:2x2-y2=2与点P(1,2).求过点P(1,2)的直线l的斜率k的取值范围,使l与C只有一个交点;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知P为曲线C上任一点,若P到点F的距离与P到直线距离相等
(1)求曲线C的方程;
(2)若过点(1,0)的直线l与曲线C交于不同两点A、B,
(I)若,求直线l的方程;
(II)试问在x轴上是否存在定点E(a,0),使恒为定值?若存在,求出E的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1
(1)求曲线C的方程.
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有?若存在,求出m的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左、右焦点分别为,上顶点为,离心率为,在轴负半轴上有一点,且
(Ⅰ)若过三点的圆恰好与直线相切,求椭圆C的方程;
(Ⅱ)在(Ⅰ)的条件下,过右焦点作斜率为的直线与椭圆C交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形?如果存在,求出的取值范围;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(18分)如图,直线与抛物线交于两点,与轴相交于点,且.
(1)求证:点的坐标为
(2)求证:
(3)求的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某椭圆的焦点F1(-4,0),F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同两点A(x1,y1),C(x2,y2)满足条件|F2A|,|F2B|,|F2C|成等差数列.(1)求该椭圆的方程;(2)求弦AC中点的横坐标.

查看答案和解析>>

同步练习册答案