(本题满分12分)如图,直三棱柱ABC—A1B1C1中,∠BAC=90°,AB=BB1=1,直线B1C与平面ABC成30°角,求二面角B-B1C-A的正弦值.
解:由直三棱柱性质得平面ABC⊥平面BCC1B1,过A作AN⊥平面BCC1B1,垂足为N,则AN⊥平面BCC1B1(AN即为我们要找的垂线),在平面BCB1内过N作NQ⊥棱B1C,垂足为Q,连接QA,则∠NQA即为二面角的平面角.
∵AB1在平面ABC内的射影为AB,CA⊥AB,
∴CA⊥B1A.AB=BB1=1,得AB1=.
∵直线B1C与平面ABC成30°角,∴∠B1CB=30°,B1C=2.
在Rt△B1AC中,由勾股定理,得AC=.∴AQ=1.
在Rt△BAC中,AB=1,AC=,得AN=.
sin∠AQN==,
即二面角BB1CA的正弦值为.
【解析】略
科目:高中数学 来源:2014届江西高安中学高二上期末考试理科数学试卷(解析版) 题型:解答题
(本题满分12分)
如图所示的几何体是由以正三角形为底面的直棱柱被平面所截而得. ,为的中点.
(1)当时,求平面与平面的夹角的余弦值;
(2)当为何值时,在棱上存在点,使平面?
查看答案和解析>>
科目:高中数学 来源:2012-2013学年湖北省八市高三3月联考理科数学试卷(解析版) 题型:解答题
(本题满分12分)如图,在长方体中,已知上下两底面为正方形,且边长均为1;侧棱,为中点,为中点,为上一个动点.
(Ⅰ)确定点的位置,使得;
(Ⅱ)当时,求二面角的平
面角余弦值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广西桂林中学高三7月月考试题理科数学 题型:解答题
(本题满分12分)如图,在四棱锥P—ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中点,F是AD的中点.
⑴求异面直线PD与AE所成角的大小;
⑵求证:EF⊥平面PBC ;
⑶求二面角F—PC—B的大小..
查看答案和解析>>
科目:高中数学 来源:2011年湖南省招生统一考试文科数学 题型:解答题
(本题满分12分)
如图3,在圆锥中,已知的直径的中点.
(I)证明:
(II)求直线和平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源:2010年海南省高三五校联考数学(文) 题型:解答题
(本题满分12分)
如图,三棱锥S—ABC中,AB⊥BC,D、E分别为AC、BC的中点,SA=SB=SC。
(1)求证:BC⊥平面SDE;
(2)若AB=BC=2,SB=4,求三棱锥S—ABC的体积。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com