精英家教网 > 高中数学 > 题目详情
已知椭圆E:
x2
m
+
y2
4
=1
,对于任意实数k,下列直线被椭圆E所截弦长与l:y=kx+1被椭圆E所截得的弦长不可能相等的是(  )
A、kx+y+k=0
B、kx-y-1=0
C、kx+y-2=0
D、kx+y-k=0
分析:当l过点(-1,0)时,直线l和选项A中的直线重合,故不能选 A.
当l过点(1,0)时,直线l和选项D中的直线关于y轴对称,被椭圆E所截得的弦长相同,
当k=0时,直线l和选项B中的直线关于x轴对称,被椭圆E所截得的弦长相同.排除A、B、D.
解答:解:由数形结合可知,当l过点(-1,0)时,直线l和选项A中的直线重合,故不能选 A.
当l过点(1,0)时,直线l和选项D中的直线关于y轴对称,被椭圆E所截得的弦长相同,故不能选D.
当k=0时,直线l和选项B中的直线关于x轴对称,被椭圆E所截得的弦长相同,故不能选B.
直线l斜率为k,在y轴上的截距为1;选项C中的直线kx+y-2=0 斜率为-k,在y轴上的截距为2,这两直线不关于x轴、
y轴、原点对称,故被椭圆E所截得的弦长不可能相等.
故选C.
点评:本题考查直线和椭圆的位置关系,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•马鞍山二模)已知椭圆C1
x2
m+2
+
y2
n
=1
与双曲线C2
x2
m
-
y2
n
=1
共焦点,则椭圆C1的离心率e的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
m+2
-
y2
n
=1与双曲线C2
x2
m
+
y2
n
=1有相同的焦点,则椭圆C1的离心率e的取值范围为(  )
A、(
2
2
,1)
B、(0,
2
2
C、(0,1)
D、(0,
1
2

查看答案和解析>>

科目:高中数学 来源:马鞍山二模 题型:单选题

已知椭圆C1
x2
m+2
+
y2
n
=1
与双曲线C2
x2
m
-
y2
n
=1
共焦点,则椭圆C1的离心率e的取值范围为(  )
A.(
2
2
,1)
B.(0,
2
2
)
C.(0,1)D.(0,
1
2
)

查看答案和解析>>

科目:高中数学 来源:徐汇区三模 题型:单选题

已知椭圆E:
x2
m
+
y2
4
=1
,对于任意实数k,下列直线被椭圆E所截弦长与l:y=kx+1被椭圆E所截得的弦长不可能相等的是(  )
A.kx+y+k=0B.kx-y-1=0C.kx+y-2=0D.kx+y-k=0

查看答案和解析>>

同步练习册答案