精英家教网 > 高中数学 > 题目详情

(本小题满分10分)某班主任对班级22名学生进行了作业量多少的调查,数据如下表:在喜欢玩电脑游戏的12中,有10人认为作业多,2人认为作业不多;在不喜欢玩电脑游戏的10人中,有3人认为作业多,7人认为作业不多.求:
(1)根据以上数据建立一个列联表;
(2)试问喜欢电脑游戏与认为作业多少是否有关系?

(1)减解析;(2)有97.5%的把握认为喜欢玩电脑游戏与认为作业多少有关.

解析试题分析:(1)根据题中已知条件,按照2×2列联表格式建立本题的2×2列联表;(2)根据2×2列联表中的数据代入独立性检验的公式,计算出的观测值,查找分布表,找出表中k值与观测值接近但比观测值小对应的概率,就是喜欢电脑游戏与认为作业多少有关系的概率.
试题解析:(1)根据题中所给数据,得到如下列联表:

 
认为作业多
认为作业不多
总  计
喜欢玩电脑游戏
10
2
12
不喜欢玩电脑游戏
3
7
10
总  计
13
9
22
                                                  6分
(2),5.024<6.418<6.635     10分
∴有97.5%的把握认为喜欢玩电脑游戏与认为作业多少有关.       14分
考点:2×2列联表;独立性检验

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某校50名学生参加2013年全国数学联赛初赛,成绩全部介于90分到140分之间.将成绩结果
按如下方式分成五组:第一组,第二组, ,第五组.按上述分组
方法得到的频率分布直方图如图所示.
(1)若成绩大于或等于100分且小于120分认为是良好的,求该校参赛学生在这次数学联赛中成绩良好
的人数;
(2)若从第一、五组中共随机取出两个成绩,求这两个成绩差的绝对值大于30分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求分数在[50,60)的频率及全班人数;
(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm)获得身高数据如下:

甲班:
158
168
162
168
163
170
182
179
171
179
乙班:
159
168
162
170
165
173
176
181
178
179
 
(1)完成数据的茎叶图(以百位十位为茎,以个位为叶),并求甲班样本数据的中位数、众数;
(2)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某中学一名数学老师对全班50名学生某次考试成绩分男女生进行了统计(满分150分),其中120分(含120分)以上为优秀,绘制了如下的两个频率分布直方图:

男生

女生
(1)根据以上两个直方图完成下面的2×2列联表:

成绩性别
优秀
不优秀
总计
男生
 
 
 
女生
 
 
 
总计
 
 
 
 
(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?
(注:
k0
2.072
2.706
3.841
5.024
6.635
7.879
10.828
P(K2≥k0)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
 
K2,其中n=a+b+c+d.)
(3)若从成绩在[130,140]的学生中任取2人,求取到的2人中至少有1名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校高一某班的某次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受了不同程度的破坏,但可见部分如图,据此解答下列问题:

(1)求分数在[50,60]的频率及全班人数;
(2)求分数在[80,90]之间的频数,并计算频率分布直方图中[80,90]间的矩形的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下面给出某村委会调查本村各户收入情况所作的抽样,阅读并回答问题:
本村人口:1200人,户数300,每户平均人口数4人;
应抽户数:30户;
抽样间隔=40;
确定随机数字:取一张人民币,编码的后两位数为12;
确定第一样本户:编码为12的户为第一样本户;
确定第二样本户:12+40=52,52号为第二样本户;
……
(1)该村委会采用了何种抽样方法?
(2)抽样过程中存在哪些问题,并修改.
(3)何处是用简单随机抽样?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

小区统计部门随机抽查了区内名网友4月1日这天的网购情况,得到如下数据统计表(图(1))网购金额超过千元的顾客被定义为“网购红人”,网购金额不超过千元的顾客被定义为“非网购红人”.已知“非网购红人”与“网购红人”人数比恰为.
(1)确定的值,并补全频率分布直方图(图(2)).
(2)为进一步了解这名网友的购物体验,从“非网购红人”和“网购红人”中用分层抽样的方法确定人,若需从这人中随机选取人进行问卷调查,设为选取的人中“网购红人”的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

某社区对居民进行上海世博会知晓情况分层抽样调查。已知该社区的青年人、中年人和老年人分别有800人、1600人、1400人,若在老年人中的抽样人数是70,则在中年人中的抽样人数应该是_________.

查看答案和解析>>

同步练习册答案