【题目】在正方体的8个顶点、12条棱的中点、6个侧面的中心点、1个体的中心点这27个点中,“共面6点组”的个数是( )。
A. 1320 B. 1326 C. 1332 D. 1336
【答案】C
【解析】
如图,设共面6 组所在的平面为
。下面依照
分类计数.
![]()
1.若
为侧面(如
),共有6 个侧面,每个侧面上共有9 个点,共形成共面6点组
个.
2.若
为中截面(如
),共有3个,每个中截面上共有9 个点,共形成共面6点组
个.
3.若
为对角面(如
),共有6个,每个面上共有9个点,共形成共面6点组
个.
4.若
为正六边形中心斜截面(如
),它经过体中心
,共有4个正六边形中心斜截面,每个这样的
上共7个点,共形成共面6点组
个.
5.若
为正三角形斜截面(如
),共有个,每个这样的
上共有6 个点,共形成共面6点组
个.
6.若
为长方形斜截面(如
),共有
个,每个这样的
上共有6个点,共形成共面6点组
个.
7.若
为长方形偏截面(如
),共有12个,每个这样的
上共有6 个点,共形成共面6点组
个.
综上,所求的共面6点组的个数为
.
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
(
为参数),以原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的方程为:![]()
当极点
到直线
的距离为
时,求直线
的直角坐标方程;
若直线
与曲线
有两个不同的交点,求实数
的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.
方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.
方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.
(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;
(2)若某顾客获得抽奖机会.
①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;
②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国清朝数学家李善兰在1859年翻译《代数学》中首次将“
”译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”1930年美国人给出了我们课本中所学的集合论的函数定义,已知集合
,
,给出下列四个对应法则,请由函数定义判断,其中能构成从
到
的函数的是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知过原点O的直线与函数
的图象交于A,B两点,分别过A,B作y轴的平行线与函数
图象交于C,D两点,若
轴,则四边形ABCD的面积为_____.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公园要设计如图所示的景观窗格(其结构可以看成矩形在四个角处对称地截去四个全等的三角形所得,如图二中所示多边形
),整体设计方案要求:内部井字形的两根水平横轴
米,两根竖轴
米,记景观窗格的外框(如图二实线部分,轴和边框的粗细忽略不计)总长度为
米.
![]()
(1)若
,且两根横轴之间的距离为
米,求景观窗格的外框总长度;
(2)由于预算经费限制,景观窗格的外框总长度不超过
米,当景观窗格的面积(多边形
的面积)最大时,给出此景观窗格的设计方案中
的大小与
的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在空间直角坐标系
中,已知正四棱锥
的高
,点
和
分别在
轴和
轴上,且
,点
是棱
的中点.
![]()
(1)求直线
与平面
所成角的正弦值;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司共有职工1500人,其中男职工1050人,女职工450人.为调查该公司职工每周平均上网的时间,采用分层抽样的方法,收集了300名职工每周平均上网时间的样本数据(单位:小时)
![]()
男职工 | 女职工 | 总计 | |
每周平均上网时间不超过4个小时 | |||
每周平均上网时间超过4个小时 | 70 | ||
总计 | 300 |
(Ⅰ)应收集多少名女职工样本数据?
(Ⅱ)根据这300个样本数据,得到职工每周平均上网时间的频率分布直方图(如图所示),其中样本数据分组区间为:
,
,
,
,
,
.试估计该公司职工每周平均上网时间超过4小时的概率是多少?
(Ⅲ)在样本数据中,有70名女职工的每周平均上网时间超过4个小时.请将每周平均上网时间与性别的
列联表补充完整,并判断是否有95%的把握认为“该公司职工的每周平均上网时间与性别有关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为
为参数
,以坐标原点为极点,x轴的正半轴为极轴建建立极坐标系,曲线C的极坐标方程为
.
求曲线C的直角坐标方程与直线l的极坐标方程;
Ⅱ
若直线
与曲线C交于点
不同于原点
,与直线l交于点B,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com