精英家教网 > 高中数学 > 题目详情

如图所示,在三棱锥P-ABC中,PA⊥平面ABC,AB=BC=CA=3,M为AB的中点,四点P、A、M、C都在球O的球面上.

(1)证明:平面PAB⊥平面PCM;

(2)证明:线段PC的中点为球O的球心

 

【答案】

  (1)证明:∵AC=BC,M为AB的中点,∴CM⊥AM.∵PA⊥平面ABC,CM⊂平面ABC,∴PA⊥CM.

∵AB∩PA=A,AB⊂平面PAB,PA⊂平面PAB,

∴CM⊥平面PAB.

∵CM⊂平面PCM,

∴平面PAB⊥平面PCM.

(2)证明:由(1)知CM⊥平面PAB.

∵PM⊂平面PAB,

∴CM⊥PM.

∵PA⊥平面ABC,AC⊂平面ABC,∴PA⊥AC.如图,,取PC的中点N,连结MN、AN.在Rt△PAC中,点N为斜边PC的中点,

∴AN=PN=NC.在Rt△PCM中,点N为斜边PC的中点,

∴MN=PN=NC.

∴PN=NC=AN=MN.

∴点N是球O的球心,即线段PC的中点为球O的球心.

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•广州一模)如图所示,在三棱锥P-ABC中,AB=BC=
6
,平面PAC⊥平面ABC,PD⊥AC于点D,AD=1,CD=3,PD=
3

(1)证明△PBC为直角三角形;
(2)求直线AP与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在三棱锥P-ABC中,PA⊥面ABC,∠ABC=90°.该三棱锥中有哪些直角三角形,哪些面面垂直(只写结果,不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在三棱锥P-ABC中,PA⊥面ABC,∠ABC=90°.
(1)判断△PBC的形状;
(2)证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在三棱锥P-ABC中,AB=BC=
6
,平面PAC⊥平面ABC,PD⊥AC于点D,点O为AC的中点,AD=1,CD=3,PD=
3

(1)求证:BO⊥平面PAC
(2)证明:△PBC为直角三角形;
(3)求直线AP与平面PBC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB⊥AC,AB=AC=2,E为AC的中点.
(1)求异面直线BE与PC所成角的余弦值;
(2)求二面角P-BE-C的平面角的余弦值.

查看答案和解析>>

同步练习册答案