精英家教网 > 高中数学 > 题目详情
设a,b为空间的两条直线,α,β为空间的两个平面,给出下列命题:
①若a∥α,a∥β,则α∥β;②若a⊥α,α⊥β,则α⊥β;
③若a∥α,b∥α,则a∥b; ④若a⊥α,b⊥α,则a∥b.
上述命题中,所有真命题的序号是________.
若a∥α,a∥β,则α∥β或α与β相交,即命题①不正确;若a⊥α,a⊥β,则α∥β,即命题②不正确;若a∥α,b∥α,则a∥b或a与b相交或a与b异面,即命题③不正确;若a⊥α,b⊥α,则a∥b,即命题④正确,综上可得真命题的序号为④.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.

(1)求证:平面AEC⊥平面ABE;
(2)点F在BE上.若DE∥平面ACF,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,,平面外一条线段AB满足AB∥DE,AB,AB⊥AC,F是CD的中点.

(1)求证:AF∥平面BCE
(2)若AC=AD,证明:AF⊥平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.

(1)求证:平面PAC⊥平面PBC
(2)若AB=2,AC=1,PA=1,求二面角CPBA的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

l1,l2,l3是空间三条不同的直线,则下列命题正确的是(  )
A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3
C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,在四边形ABCD中,ADBCADAB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥ABCD,则在三棱锥ABCD中,下列命题正确的是(  )
A.平面ABD⊥平面ABCB.平面ADC⊥平面BDC
C.平面ABC⊥平面BDCD.平面ADC⊥平面ABC

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,平面平面,四边形是正方形,四边形是矩形,且的中点,则与平面所成角的正弦值为___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在如图所示的正方体ABCD-A1B1C1D1中,异面直线A1B与B1C所成角的大小为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

A、B是直二面角的棱上的两点,分别在内作垂直于棱的线段AC,BD,已知AB=AC=BD=1,那么CD的长为(   )
A.1     B.2     C.  D.

查看答案和解析>>

同步练习册答案