精英家教网 > 高中数学 > 题目详情
A、B是直二面角的棱上的两点,分别在内作垂直于棱的线段AC,BD,已知AB=AC=BD=1,那么CD的长为(   )
A.1     B.2     C.  D.
D

试题分析: 连接BC, 在中,,直二面角中,,得,则,于是,选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在矩形中,点为边上的点,点为边的中点,,现将沿边折至位置,且平面平面.

(1) 求证:平面平面
(2) 求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.

(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求棱锥E-DFC的体积;
(3)在线段BC上是否存在一点P,使AP⊥DE?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为直角梯形,,平面⊥底面的中点,是棱上的点,

(Ⅰ)求证:平面⊥平面
(Ⅱ)若为棱的中点,求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设a,b为空间的两条直线,α,β为空间的两个平面,给出下列命题:
①若a∥α,a∥β,则α∥β;②若a⊥α,α⊥β,则α⊥β;
③若a∥α,b∥α,则a∥b; ④若a⊥α,b⊥α,则a∥b.
上述命题中,所有真命题的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列四个结论:
⑴两条不同的直线都和同一个平面平行,则这两条直线平行.
⑵两条不同的直线没有公共点,则这两条直线平行.
⑶两条不同直线都和第三条直线垂直,则这两条直线平行.
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行.
其中正确的个数为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二面角a--l--b为600,动点P、Q分别在a、b内,P到b的距离为,Q到a的距离为2, 则PQ两点之间距离的最小值为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于平面和直线,下列命题中真命题是              (   )
A.若,则
B.若
C.若,则
D.若,则.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为不同的直线,为不同的平面,给出下列四个命题:
①若,则;              ②若,则
③若,则;  ④若,则.
其中所有正确命题的序号是(    )
A.①②B.②③C.①③D.①④

查看答案和解析>>

同步练习册答案