精英家教网 > 高中数学 > 题目详情
对于平面和直线,下列命题中真命题是              (   )
A.若,则
B.若
C.若,则
D.若,则.
B.

试题分析:由线面垂直的判定定理知,还需相交才能得,故错;由线面平行的判定定理,还需知,故错;由面面平行的判定定理知,还需相交才能得,故错. 所以选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.

(1)求证:平面PAC⊥平面PBC
(2)若AB=2,AC=1,PA=1,求二面角CPBA的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,四边形是菱形,,E为PB的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面平面.   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,在长方体中,,点E为AB的中点.

(Ⅰ)求与平面所成的角;
(Ⅱ)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC=30°,BM⊥AC交 AC 于点 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1.

(I)证明:EM⊥BF;
(II)求平面 BEF 与平面ABC 所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

A、B是直二面角的棱上的两点,分别在内作垂直于棱的线段AC,BD,已知AB=AC=BD=1,那么CD的长为(   )
A.1     B.2     C.  D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,有下列四个命题:
① 若;           ② 若
③ 若;      ④ 若
其中正确命题的序号是(   )
A.①③B.①②C.③④D.②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

四面体ABCD中,AD与BC互相垂直,且AB+BD=AC+CD.则下列结论中错误的是(     )
A.若分别作△BAD和△CAD的边AD上的高,则这两条高所在直线异面
B.若分别作△BAD和△CAD的边AD上的高,则这两条高长度相等
C.AB=AC且DB=DC
D.∠DAB=∠DAC

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥中,的中点,

(1)求证:
(2)求证:
(3)求三棱锥的体积

查看答案和解析>>

同步练习册答案