精英家教网 > 高中数学 > 题目详情
如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC=30°,BM⊥AC交 AC 于点 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1.

(I)证明:EM⊥BF;
(II)求平面 BEF 与平面ABC 所成锐二面角的余弦值.
(Ⅰ)详见解析;(Ⅱ).

试题分析:(Ⅰ)先以点为坐标原点建立空间直角坐标系,并以此确定四点的坐标,通过验证来达到证明的目的;(Ⅱ)求出平面与平面各自的法向量,利用空间向量法求出平面与平面所成锐二面角的余弦值.
试题解析:(1)
如图,以为坐标原点,垂直于所在的直线为轴建立空间直角坐标系.由已知条件得



.  
(2)由(1)知
设平面的法向量为
,得

由已知平面,所以取面的法向量为
设平面与平面所成的锐二面角为

平面与平面所成的锐二面角的余弦值为. 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在矩形中,点为边上的点,点为边的中点,,现将沿边折至位置,且平面平面.

(1) 求证:平面平面
(2) 求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在六面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1.  (1)求证:BF∥平面ACGD; (2)求二面角D­CG­F的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥中,侧面底面中点,底面是直角梯形,,,.

(1)求证:
(2)求证:面
(3)设为棱上一点,,试确定的值使得二面角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二面角a--l--b为600,动点P、Q分别在a、b内,P到b的距离为,Q到a的距离为2, 则PQ两点之间距离的最小值为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于平面和直线,下列命题中真命题是              (   )
A.若,则
B.若
C.若,则
D.若,则.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列命题中正确的是              .(填上你认为所有正确的选项)
①空间中三个平面,若,则
②若为三条两两异面的直线,则存在无数条直线与都相交;
③球与棱长为正四面体各面都相切,则该球的表面积为
④三棱锥中,.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为不同的直线,为不同的平面,给出下列四个命题:
①若,则;              ②若,则
③若,则;  ④若,则.
其中所有正确命题的序号是(    )
A.①②B.②③C.①③D.①④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,下列命题中正确的是(    )
A.若,,,则
B.若,,,则
C.若,,,则
D.若,,,则

查看答案和解析>>

同步练习册答案