(本题满分15分)已知定义在上的函数
,其中为常数。
(1)若
是函数
的一个极值点,求的值; (2)若函数
在区间
上是增函数,求实数的取值范围; (3)若
,在
处取得最大值,求实数的取值范围。
(Ⅰ)
(Ⅱ)
(Ⅲ)![]()
(1)
,(1分)
因为
是
的一个极值点,所以
,所以
;(3分)
(2)①当
时,
在区间
上是增函数,所以
符合题意,(5分)
② 当
时,
,令
得:
。
当
时,对任意
,所以
符合题意;
当
时,
时,
,所以
,
所以
符合题意。 (8分)
综上所述得的取值范围为:
(9分)
(3)
。
, (11分)
令
,即
,(*)显然![]()
设方程(*)的两个根分别为
,由(*)式得
,
不妨设
。
当
时,
为极小值,
所以
在
上的最大值只能是
或
;
当
时,由于
在
上是递减函数,所以最大值为![]()
所以
在
上的最大值只能是
或
; (14分)
由已知得
在
处取得最大值,所以
;
即
,解得
,
又因为
,所以的取值范围为
。 (15分)
科目:高中数学 来源:2013届浙江省余姚中学高三上学期期中考试文科数学试卷(带解析) 题型:解答题
(本题满分15分)已知点
(0,1),
,直线
、
都是圆
的切线(
点不在
轴上).
(Ⅰ)求过点
且焦点在
轴上的抛物线的标准方程;
(Ⅱ)过点(1,0)作直线
与(Ⅰ)中的抛物线相交于![]()
两点,问是否存在定点
使
为常数?若存在,求出点
的坐标及常数;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省桐乡市高三10月月考理科数学 题型:解答题
(本题满分15分)已知函数
.
(Ⅰ)若
为定义域上的单调函数,求实数m的取值范围;
(Ⅱ)当
时,求函数
的最大值;
(Ⅲ)当
,且
时,证明:
.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省桐乡市高三下学期2月模拟考试文科数学 题型:解答题
(本题满分15分)已知圆N:
和抛物线C:
,圆的切线
与抛物线C交于不同的两点A,B,
(1)当直线
的斜率为1时,求线段AB的长;
(2)设点M和点N关于直线
对称,问是否存在直线
使得
?若存在,求出直线
的方程;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源:杭州市2010年第二次高考科目教学质量检测 题型:解答题
(本题满分15分)已知直线
,曲线![]()
(1)若
且直线与曲线恰有三个公共点时,求实数
的取值;
(2)若
,直线与曲线M的交点依次为A,B,C,D四点,求|AB+|CD|的取值范围。[来源:Z+xx+k.Com]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com